skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1447311

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Observations of high ferric iron content in diamond garnet inclusions and mantle plume melts suggest a highly heterogeneous distribution of ferric iron in the mantle. Recycling of oxidized materials such as carbonates from Earth’s surface by subduction could explain the observed variations. Here we present high-pressure high-temperature multi-anvil experiments to determine the redox reactions between calcium-, magnesium-, or iron-carbonate and ferrous iron-bearing silicate mineral (garnet or fayalite) at conditions representative of subduction zones with intermediate thermal structures. We show that both garnet and fayalite can be oxidized to ferric iron-rich garnets accompanied by reduction of calcium carbonate to form graphite. The ferric iron content in the synthetic garnets increases with increasing pressure, and is correlated with the Ca content in the garnets. We suggest that recycled sedimentary calcium carbonate could influence the evolution of the mantle oxidation state by efficiently increasing the ferric iron content in the deep upper mantle. 
    more » « less
  2. null (Ed.)