skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1447788

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study the problem of learning a mixture model of non-parametric product distributions. The problem of learning a mixture model is that of finding the component distributions along with the mixing weights using observed samples generated from the mixture. The problem is well-studied in the parametric setting, i.e., when the component distributions are members of a parametric family - such as Gaussian distributions. In this work, we focus on multivariate mixtures of non-parametric product distributions and propose a two-stage approach which recovers the component distributions of the mixture under a smoothness condition. Our approach builds upon the identifiability properties of the canonical polyadic (low-rank) decomposition of tensors, in tandem with Fourier and Shannon-Nyquist sampling staples from signal processing. We demonstrate the effectiveness of the approach on synthetic and real datasets. 
    more » « less