skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1451954

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Nyström method is a matrix approximation technique that has shown great promise in speeding up spectral clustering. However, when the input matrix is sparse, we show that the traditional Nyström method requires a prohibitively large number of samples to obtain a good approximation. We propose a novel sampling approach to select the landmark points used to compute the Nyström approximation. We show that the proposed sampling approach obeys the same error bound as in Bouneffouf and Birol (2015). To control sample complexity, we propose a selective densification step based on breadth-first traversal. We show that the proposed densification does not change the optimal clustering. Results on real world datasets show that by combining the proposed sampling and densification schemes, we can obtain better accuracy compared to other techniques used for the Nyström method while using significantly fewer samples. 
    more » « less
  2. We analyze online (Bottou & Bengio, 1994) and mini-batch (Sculley, 2010) k-means variants. Both scale up the widely used Lloyd’s algorithm via stochastic approximation, and have become popular for large-scale clustering and unsupervised feature learning. We show, for the first time, that they have global convergence towards “local optima” at rate O(1/t) under general conditions. In addition, we show that if the dataset is clusterable, stochastic k-means with suitable initialization converges to an optimal k-means solution at rate O(1/t) with high probability. The k-means objective is non-convex and non-differentiable; we exploit ideas from non-convex gradient-based optimization by providing a novel characterization of the trajectory of the k-means algorithm on its solution space, and circumvent its non-differentiability via geometric insights about the k-means update. 
    more » « less