skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1454544

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Single-entity electrochemistry is of fundamental importance and shows promise for ultrasensitive biosensing applications. Recently, we have demonstrated that various charged nanoparticles can be detected individually based on the non-redox open-circuit potential (OCP) changes induced by their collision events on a floating carbon nanoelectrode (CNE). Unlike the widely used amperometry approach, the potentiometric method provides the label-free detection of individual nanoscale entities without redox mediators in the solution. However, the CNE lacks specificity for molecular recognition during the collision events because of the limited methods of surface functionalization for carbon surfaces. Herein, we used surface-functionalized gold nanoelectrode (GNE) to overcome this limitation of CNE. The GNE modified with Raman reporter molecule also enabled surface-enhanced Raman spectroscopy (SERS) measurements. By using simultaneous time-resolved OCP and SERS measurements, both the OCP and SERS signals induced by the “hit-n-run” type of gold nanoparticle (GNP) collision events can be better understood. Also, by introducing a zwitterionic molecule, we formed near “stealth” surface and demonstrated that the non-specific adsorptions of GNPs to the surface of GNE have been suppressed, allowing continuous detection of hit-n-run events for over 30 min. 
    more » « less