skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1454939

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. It is well-known that any quantum channel E satisfies the data processing inequality (DPI), with respect to various divergences, e.g., quantum χ κ 2 divergences and quantum relative entropy. More specifically, the data processing inequality states that the divergence between two arbitrary quantum states ρ and σ does not increase under the action of any quantum channel E . For a fixed channel E and a state σ , the divergence between output states E ( ρ ) and E ( σ ) might be strictly smaller than the divergence between input states ρ and σ , which is characterized by the strong data processing inequality (SDPI). Among various input states ρ , the largest value of the rate of contraction is known as the SDPI constant. An important and widely studied property for classical channels is that SDPI constants tensorize. In this paper, we extend the tensorization property to the quantum regime: we establish the tensorization of SDPIs for the quantum χ κ 1 / 2 2 divergence for arbitrary quantum channels and also for a family of χ κ 2 divergences (with κ ≥ κ 1 / 2 ) for arbitrary quantum-classical channels. 
    more » « less