skip to main content

Search for: All records

Award ID contains: 1459536

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Climate change poses a major threat to coral reefs. We conducted an outdoor 22-month experiment to investigate if coral could not just survive, but also physiologically cope, with chronic ocean warming and acidification conditions expected later this century under the Paris Climate Agreement. We recorded survivorship and measured eleven phenotypic traits to evaluate the holobiont responses of Hawaiian coral: color, Symbiodiniaceae density, calcification, photosynthesis, respiration, total organic carbon flux, carbon budget, biomass, lipids, protein, and maximumArtemiacapture rate. Survivorship was lowest inMontipora capitataand only some survivors were able to meet metabolic demand and physiologically cope with future ocean conditions. MostM. capitatasurvivors bleached through loss of chlorophyll pigments and simultaneously experienced increased respiration rates and negative carbon budgets due to a 236% increase in total organic carbon losses under combined future ocean conditions.Porites compressaandPorites lobatahad the highest survivorship and coped well under future ocean conditions with positive calcification and increased biomass, maintenance of lipids, and the capacity to exceed their metabolic demand through photosynthesis and heterotrophy. Thus, our findings show that significant biological diversity within resilient corals likePorites, and some genotypes of sensitive species, will persist this century provided atmospheric carbon dioxide levels are controlled. SincePoritescorals are ubiquitous throughout the world’s oceans and often major reef builders, the persistence of this resilient genus provides hope for future reef ecosystem function globally.

    more » « less
  2. Abstract

    Corals obtain nutrition from the photosynthetic products of their algal endosymbionts and the ingestion of organic material and zooplankton from the water column. Here, we use stable carbon (δ13C) and nitrogen (δ15N) isotopes to assess the proportionate contribution of photoautotrophic and heterotrophic sources to seven Hawaiian coral species collected from six locations around the island of O‘ahu, Hawaiʻi. We analyzed the δ13C and δ15N of coral tissues and their algal endosymbionts, as well as that of dissolved inorganic matter, particulate organic matter, and zooplankton from each site. Estimates of heterotrophic contribution varied among coral species and sites. Bayesian mixing models revealed that heterotrophic sources (particulate organic material and zooplankton) contributed the most toPocillopora acutaandMontipora patulacoral tissues at 49.3% and 48.0%, respectively, and the least toPorites lobataat 28.7%, on average. Estimates of heterotrophic contribution based on the difference between δ13C of the host and algal endosymbiont (δ13Ch–e) and isotopic niche overlap often differed, while estimates based on δ15Nh–ewere slightly more aligned with the estimates produced using Bayesian mixing models. These findings suggest that the utility of each approach may vary with coral health status, regions, and coral species. Overall, we find that the mean heterotrophic contribution to Hawaiian coral tissues ranges from 20% to 50%, suggesting a variety of trophic strategies. However, these findings did not always match past direct measurements of heterotrophic feeding, indicating that heterotrophically acquired nutrition does not necessarily get incorporated into tissues but can be respired or exuded in mucus.

    more » « less
  3. Coral reefs are among the most diverse and complex ecosystems in the world that provide important ecological and economical services. Increases in sea surface temperature linked to global climate change threatens these ecosystems by inducing coral bleaching. However, it is not fully known if natural intra- or inter-annual physiological variability is linked to bleaching resilience or recovery capacity of corals. Here, we monitored the coral physiology of three common Caribbean species ( Porites divaricata, Porites astreoides, Orbicella faveolata ) at six time points over 2 years by measuring the following traits: calcification, biomass, lipids, proteins, carbohydrates, chlorophyll a , algal endosymbiont density, stable carbon isotopes of the host and endosymbiotic algae, and the stable carbon and oxygen isotopes of the skeleton. The overall physiological profile of all three species varied over time and that of P. divaricata was consistently different from the two other coral species. Porites divaricata had higher energy reserves coupled with higher contributions of heterotrophically derived carbon to host tissues than both P. astreoides and O. faveolata . Consistently higher overall energy reserves and heterotrophic contributions to tissues appear to buffer against environmental stress, including bleaching events. Thus, natural physiological variability among coral species appears to be a stronger predictor of coral bleaching resilience than intra- or inter-annual physiological variability within a coral species. 
    more » « less
  4. Evidence has shown that individually feeding or reduced light can mitigate the negative effects of elevated temperature on coral physiology. We aimed to evaluate if simultaneous low light and feeding would mitigate, minimize, or exacerbate negative effects of elevated temperature on coral physiology and carbon budgets. Pocillopora damicornis, Stylophora pistillata, and Turbinaria reniformis were grown for 28 days under a fully factorial experiment including two seawater temperatures (ambient temperature of 25 °C, elevated temperature of 30 °C), two light levels (high light of 300 μmol photons m−2 s−1, low light of 150 μmol photons m−2 s−1), and either fed (Artemia nauplii) or unfed. Coral physiology was significantly affected by temperature in all species, but the way in which low light and feeding altered their physiological responses was species-specific. All three species photo-acclimated to low light by increasing chlorophyll a. Pocillopora damicornis required feeding to meet metabolic demand irrespective of temperature but was unable to maintain calcification under low light when fed. In T. reniformis, low light mitigated the negative effect of elevated temperature on total lipids, while feeding mitigated the negative effects of elevated temperature on metabolic demand. In S. pistillata, low light compounded the negative effects of elevated temperature on metabolic demand, while feeding minimized this negative effect but was not sufficient to provide 100% metabolic demand. Overall, low light and feeding did not act synergistically, nor additively, to mitigate the negative effects of elevated temperature on P. damicornis, S. pistillata, or T. reniformis. However, feeding alone was critical to the maintenance of metabolic demand at elevated temperature, suggesting that sufficient supply of heterotrophic food sources is likely essential for corals during thermal stress (bleaching) events. 
    more » « less