Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Northwest Africa transitioned from a wet/vegetated landscape toward drier/sparser conditions sometime between the late‐Pliocene and the late‐Pleistocene. However, our understanding of the precise timing and nature of this transition is hampered by a paucity of paleo‐records which bridge these two intervals. Here we report new plant‐wax isotope as well as dust and opal flux records from the relatively brief interval ∼1.1–1.0 million years ago (Ma) to evaluate the astronomical timescale controls of Northwest African hydroclimate and vegetation during the Mid‐Pleistocene Transition (MPT) and, in context with published records, the drivers of long‐term climate and ecological trends over the Plio‐Pleistocene. The tempo and amplitude of the Northwest African monsoon rainfall swings closely track low latitude insolation forcings over the last 5 Ma. However, we demonstrate that a pronounced mean state decline in monsoon strength likely occurred following the MPT most likely instigated by increasing Atlantic meridional sea surface temperature gradients or declines in the strength of the meridional overturning circulation. The northward extent of vegetation does not track changes in monsoon strength over the Plio‐Pleistocene and thus may be more strongly influenced by changes in monsoon rainfall extent or ecosystem disturbances. Progressively diminished dust fluxes following a decline in monsoon strength after 1.0 Ma is consistent with reduced production and subsequent depletion of fine‐grained sediments in the Sahara. Synchroneity between dust and opal fluxes across timescales suggests nutrient delivery to the surface ocean via dust plays a key role in marine primary productivity off the coast of Northwest Africa.more » « less
- 
            Understanding the transport mechanisms of terrestrial biomarkers to marine sediments is critical for interpreting past environmental and climate changes from these valuable archives. Here, we produce new estimates of two classes of terrestrial plant biomarkers, n-alkane waxes and pentacyclic triterpene methyl ethers (PTMEs), from a transect of marine core top sediments that span the full length of the West African margin. We determine the chain length distributions, mass accumulation rates, carbon isotope signatures (δ13C) of n-alkanes and the mass accumulation rates of PTMEs and assess the extent to which these proxy characteristics reflect vegetation and climate patterns within source areas on adjacent land. We achieve this via comparisons with a variety of satellite-based vegetation and climate data sets and with atmospheric back trajectory and river basin estimates. The mass accumulation rate of grass-produced PTMEs to core top marine sediments shows good spatial agreement with the presence of C4 grasses on land and appears to have shorter transport distances than n-alkanes. The mass accumulation rate of n-alkanes roughly corresponds to changes in the landscape net primary productivity. The δ13C signature of n-alkanes records changes in landscape C3 versus C4 vegetation balance while longer chain length n-alkane distributions indicate drier conditions and grassier vegetation. Apparent discrepancies between the zonal distribution of biomarkers in the marine sediments versus the observed vegetation patterns can mostly be explained by the influence of long-range atmospheric transport, with modest contributions from river inputs.more » « lessFree, publicly-accessible full text available July 1, 2026
- 
            Savanna ecosystems were the landscapes for human evolution and are vital to modern Sub-Saharan African food security, yet the fundamental drivers of climate and ecology in these ecosystems remain unclear. Here we generate plant-wax isotope and dust flux records to explore the mechanistic drivers of the Northwest African monsoon, and to assess ecosystem responses to changes in monsoon rainfall and atmospheric pCO2. We show that monsoon rainfall is controlled by low-latitude insolation gradients and that while increases in precipitation are associated with expansion of grasslands into desert landscapes, changes in pCO2 predominantly drive the C3/C4 composition of savanna ecosystems.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
