- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Conkin, Drew F (1)
-
Ganjoloo, Nandin (1)
-
Machonkin, Timothy E (1)
-
Maker, Madeleine S (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
PnpC1C2 is an enzyme from the soil bacterium Pseudomonas putida DLL-E4 that is in the pathway for the oxidative catabolism of 4-nitrophenol. PnpC1C2 oxidatively cleaves hydroquinone into -hydroxymuconic semialdehyde. It belongs to the type II hydroquinone dioxygenase family, a relatively uncharacterized group of mononuclear nonheme Fe(II)-dependent enzymes that catalyze oxidative ring-cleavage reactions, which includes the well-studied catechol extradiol dioxygenases as well as the structurally unrelated 2,6-dichlorohydro-quinone dioxygenase (PcpA). Steady-state kinetics studies using UV/Vis spectroscopy were performed to characterize the enzyme specificity towards various substituted hydroquinones. In addition to its native substrate, PnpC1C2 was active towards a variety of monosubstituted hydroquinones. Methyl- and methoxyhydroquinone showed a moderately higher , and chloro- and bromohydroquinone showed a moderately lower , but all had a within an order of magnitude of unsubstituted hydroquinone. Likewise, only small differences in the rates of mechanism-based inactivation were observed among these substrates. Among disubstituted hydroquinones, only 2,6- and 2,5-dimethylhydroquinone showed any activity, with the latter only barely detectable. A variety of para-substituted phenols were found to be good inhibitors of PnpC1C2. NMR studies were performed to determine the regioselectivity of ring-cleavage with monosubstituted hydroquinones. All monosubstituted hydroquinones tested (methyl-, chloro-, bromo-, and methoxyhydroquinone) yielded exclusively the 1,6-cleavage product. Thus, PnpC1C2 shows notable differences in both its substrate specificity and the ring-cleavage regioselectivity compared to that of PcpA. These results provide an important basis for future comparison of structure-function correlations among the hydroquinone ring-cleaving dioxygenases.more » « lessFree, publicly-accessible full text available February 1, 2026
An official website of the United States government
