skip to main content


Search for: All records

Award ID contains: 1508049

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Poly(dimethylsiloxane) (PDMS) is likely the most popular material for microfluidic devices in lab-on-a-chip and other biomedical applications. However, the hydrophobicity of PDMS leads to non-specific adsorption of proteins and other molecules such as therapeutic drugs, limiting its broader use. Here, we introduce a simple method for preparing PDMS materials to improve hydrophilicity and decrease non-specific protein adsorption while retaining cellular biocompatibility, transparency, and good mechanical properties without the need for any post-cure surface treatment. This approach utilizes smart copolymers comprised of poly(ethylene glycol) (PEG) and PDMS segments (PDMS-PEG) that, when blended with PDMS during device manufacture, spontaneously segregate to surfaces in contact with aqueous solutions and reduce the hydrophobicity without any added manufacturing steps. PDMS-PEG-modified PDMS samples showed contact angles as low as 23.6° ± 1° and retained this hydrophilicity for at least twenty months. Their improved wettability was confirmed using capillary flow experiments. Modified devices exhibited considerably reduced non-specific adsorption of albumin, lysozyme, and immunoglobulin G. The modified PDMS was biocompatible, displaying no adverse effects when used in a simple liver-on-a-chip model using primary rat hepatocytes. This PDMS modification method can be further applied in analytical separations, biosensing, cell studies, and drug-related studies.

     
    more » « less
  2. Membrane separations are simple to operate, scalable, versatile, and energy efficient, but their broader use is curtailed by fouling or performance decline due to feed component depositing on the membrane surface. Surface functionalization with groups such as zwitterions can mitigate the adsorption of organic compounds, thus limiting fouling. This can be achieved by using surface-segregating copolymer additives during membrane manufacture, but there is a need for better understanding of how the polymer structure and architecture affect the effectiveness of these additives in improving membrane performance. In this study, we aim to explore the impact of the architecture of zwitterionic copolymer additives for polyvinylidene fluoride (PVDF)-based membranes in fouling mitigation and ionic strength response. We prepared membranes from blends of PVDF with zwitterionic (ZI) copolymers with two different architectures, random and comb-shaped. As the random copolymer, we used poly(methyl methacrylate- random- sulfobetaine-2-vinyl pyridine) (PMMA- r -SB2VP) synthesized by free radical polymerization. The comb-shaped copolymer was synthesized by grafting SB2VP side-chains from a PVDF backbone by controlled radical polymerization. Membranes were fabricated from PVDF-copolymer blends containing up to 5 wt% ZI copolymer. Compared to the additive-free PVDF membrane, water permeance increased five-fold with 5 wt% addition of either copolymer. The comb copolymer additive led to better resistance to fouling by a saline oil-in-water emulsion and to simulated protein adsorption in Atomic Force Microscopy (AFM) force measurements. The additive architecture had a significant influence on how membranes respond to changes in feed salinity, which is known to affect intra- and inter-molecular interactions in zwitterionic polymers. The random copolymer containing membrane showed a small and mostly reversible decrease in its permeance with salinity. In contrast, the comb copolymer-containing membrane underwent a conformational reorganization in saline solutions that leads to an irreversible permeance decrease, increased zwitterionic group content on the membrane surface, and smoother surface topography. The higher mobility of the zwitterionic groups in the comb-shaped architecture facilitates reorganization of the zwitterionic side-chains in response to ionic strength. Overall, this study establishes a new approach for developing highly fouling resistant membranes and defines how the architecture of a zwitterionic copolymer additive impacts the ionic strength response and fouling resistance of the membrane. 
    more » « less