skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, April 12 until 2:00 AM ET on Saturday, April 13 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1514591

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We show that, in a many‐body system, all particles can be strongly confined to the initially occupied sites for a time that scales as a high power of the ratio of the bandwidth of site energies to the hopping amplitude. Such time‐domain formulation is complementary to the formulation of the many‐body localization of all stationary states with a large localization length. The long localization lifetime is achieved by constructing a periodic sequence of site energies with a large period in a one‐dimensional chain. The scaling of the localization lifetime is independent of the number of particles for a broad range of the coupling strength. The analytical results are confirmed by numerical calculations.image

     
    more » « less