skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1521539

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Over twenty years ago, Abadi et al. established the Dependency Core Calculus (DCC) as a general purpose framework for analyzing dependency in typed programming languages. Since then, dependency analysis has shown many practical benefits to language design: its results can help users and compilers enforce security constraints, eliminate dead code, among other applications. In this work, we present a Dependent Dependency Calculus (DDC), which extends this general idea to the setting of a dependently-typed language. We use this calculus to track both run-time and compile-time irrelevance, enabling faster typechecking and program execution. 
    more » « less
  2. Lazy evaluation is a powerful tool for functional programmers. It enables the concise expression of on-demand computation and a form of compositionality not available under other evaluation strategies. However, the stateful nature of lazy evaluation makes it hard to analyze a program's computational cost, either informally or formally. In this work, we present a novel and simple framework for formally reasoning about lazy computation costs based on a recent model of lazy evaluation: clairvoyant call-by-value. The key feature of our framework is its simplicity, as expressed by our definition of the clairvoyance monad. This monad is both simple to define (around 20 lines of Coq) and simple to reason about. We show that this monad can be effectively used to mechanically reason about the computational cost of lazy functional programs written in Coq. 
    more » « less
  3. null (Ed.)
    Graded Type Theory provides a mechanism to track and reason about resource usage in type systems. In this paper, we develop GraD, a novel version of such a graded dependent type system that includes functions, tensor products, additive sums, and a unit type. Since standard operational semantics is resource-agnostic, we develop a heap-based operational semantics and prove a soundness theorem that shows correct accounting of resource usage. Several useful properties, including the standard type soundness theorem, non-interference of irrelevant resources in computation and single pointer property for linear resources, can be derived from this theorem. We hope that our work will provide a base for integrating linearity, irrelevance and dependent types in practical programming languages like Haskell. 
    more » « less
  4. We present a principled automatic testing framework for application-layer protocols. The key innovation is a domain-specific embedded language for writing nondeterministic models of the behavior of networked servers. These models are defined within the Coq interactive theorem prover, supporting a smooth transition from testing to formal verification. Given a server model, we show how to automatically derive a tester that probes the server for unexpected behaviors. We address the uncertainties caused by both the server's internal choices and the network delaying messages nondeterministically. The derived tester accepts server implementations whose possible behaviors are a subset of those allowed by the nondeterministic model. We demonstrate the effectiveness of this framework by using it to specify and test a fragment of the HTTP protocol, showing that the automatically derived tester can capture RFC violations in buggy server implementations, including the latest versions of Apache and Nginx. 
    more » « less
  5. We would like to use the Coq proof assistant to mechanically verify properties of Haskell programs. To that end, we present a tool, named hs-to-coq, that translates total Haskell programs into Coq programs via a shallow embedding. We apply our tool in three case studies -- a lawful Monad instance, ``Hutton's razor'', and an existing data structure library -- and prove their correctness. These examples show that this approach is viable: both that hs-to-coq applies to existing Haskell code, and that the output it produces is amenable to verification. 
    more » « less