skip to main content


Search for: All records

Award ID contains: 1523605

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The study of ancient DNA is revolutionizing our understanding of paleo-ecology and the evolutionary history of species. Insects are essential components in many ecosystems and constitute the most diverse group of animals. Yet they are largely neglected in ancient DNA studies. We report the results of the first targeted investigation of insect ancient DNA to positively identify subfossil insects to species, which includes the recovery of endogenous content from samples as old as ~ 34,355 ybp. Potential inhibitors currently limiting widespread research on insect ancient DNA are discussed, including the lack of closely related genomic reference sequences (decreased mapping efficiency) and the need for more extensive collaborations with insect taxonomists. The advantages of insect-based studies are also highlighted, especially in the context of understanding past climate change. In this regard, insect remains from ancient packrat middens are a rich and largely uninvestigated resource for exploring paleo-ecology and species dynamics over time.

     
    more » « less
  2. Abstract

    The taxonomic concepts of Blapimorpha and Opatrinae (informal and traditional, morphology‐based groupings among darkling beetles) are tested using molecular phylogenetics and a reassessment of larval and adult morphology to address a major phylogeny‐classification gap in Tenebrionidae. Instead of a holistic approach (family‐level phylogeny), this study uses a bottom‐up strategy (tribal grouping) in order to define larger, monophyletic lineages within Tenebrioninae. Sampling included representatives of 27 tenebrionid tribes: Alleculini, Amarygmini, Amphidorini, Blaptini, Bolitophagini, Branchini, Cerenopini, Coniontini, Caenocrypticini, Dendarini, Eulabini, Helopini, Lagriini, Melanimini, Opatrini, Pedinini, Phaleriini, Physogasterini, Platynotini, Platyscelidini, Praociini, Scaurini, Scotobiini, Tenebrionini, Trachyscelini, Triboliini and Ulomini. Molecular analyses were based on DNA sequence data from four non‐overlapping gene regions: carbamoyl‐phosphate synthetase domain ofrudimentary(CAD) (723 bp),wingless(wg) (438 bp) and nuclear ribosomal 28S (1101 bp) and mitochondrial ribosomal 12S (363 bp). Additionally, 15 larval and imaginal characters were scored and subjected to an ancestral state reconstruction analysis. Results revealed that Amphidorini, Blaptini, Dendarini, Pedinini, Platynotini, Platyscelidini and Opatrini form a clade which can be defined by the following morphological features: adults—antennae lacking compound/stellate sensoria; procoxal cavities externally and internally closed, intersternal membrane of abdominal ventrites 3–5 visible; paired abdominal defensive glands present, elongate, not annulated; larvae—prolegs enlarged (adapted for digging); ninth tergite lacking urogomphi. To accommodate this monophyletic grouping (281 genera and ∼4000 species), the subfamily Blaptinaesens. nov.is resurrected. Prior to these results, all of the tribes within Blaptinae were classified within the polyphyletic subfamily Tenebrioninae. The non‐monophyletic nature of Terebrioninae has already been postulated by previous authors, yet no taxonomic decisions were made to fix its status. The reinstatement of Blaptinae, which groups ∼50% of the former Tenebrioninae, helps to clarify phylogenetic relations among the whole family and is the first step towards a complete higher‐level revision of Tenebrionidae. The Central Asian tribe Dissonomini (two genera, ∼30 species) was not included in Blaptinae due to a lack of representatives in the performed phylogenetic analyses; however, based on morphological features, the tribe is listed as a potential addition to the subfamily.

     
    more » « less
  3. null (Ed.)
    The darkling beetle genus Hypogena Dejean, 1834 (Tenebrionidae: Tenebrioninae) is revised. Hypogena is entirely composed of dorsoventrally flattened species that live subcortically in dead trees. This genus is generally identified by male specific characters, particularly the presence of cephalic horns. Hypogena is currently placed within the tribe Triboliini Gistel, 1848. However, several previously overlooked morphological characters call into question its placement within the tribe. A morphological matrix of 94 external adult characters was assembled to examine species relationships and boundaries. The resulting phylogeny is presented. Thirteen Hypogena species were previously recognized as valid, including Hypogena marginalis Doyen & Poinar from Dominican amber. Four previously unidentified species are described in this study: Hypogena akuma sp. nov. (Brazil), Hypogena cryptica sp. nov. (Mexico), Hypogena hirsuta sp. nov. (Ecuador), and Hypogena reburra sp. nov. (Colombia). Lectotypes are designated for Hypogena depressa (Champion, 1886), Hypogena dejeani (Champion, 1886), Hypogena canaliculata (Champion, 1886), and Hypogena vacca (Fabricius, 1801). A neotype is designated for Tenebrio biimpressus (Latreille, 1833) (type species of Hypogena, synonymized under Hypogena brasilica (Perty)) in order to maintain stability within the genus. 
    more » « less