skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1526988

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The public is increasingly concerned about the practices of large technology companies with regards to privacy and many other issues. To force changes in these practices, there have been growing calls for “data strikes.” These new types of collective action would seek to create leverage for the public by starving business-critical models (e.g. recommender systems, ranking algorithms) of much-needed training data. However, little is known about how data strikes would work, let alone how effective they would be. Focusing on the important commercial domain of recommender systems, we simulate data strikes under a wide variety of conditions and explore how they can augment traditional boycotts. Our results suggest that data strikes can be effective and that users have more power in their relationship with technology companies than they do with other companies. However, our results also highlight important trade-offs and challenges that must be considered by potential organizers. 
    more » « less
  2. Search engines are some of the most popular and profitable intelligent technologies in existence. Recent research, however, has suggested that search engines may be surprisingly dependent on user-created content like Wikipedia articles to address user information needs. In this paper, we perform a rigorous audit of the extent to which Google leverages Wikipedia and other user-generated content to respond to queries. Analyzing results for six types of important queries (e.g. most popular, trending, expensive advertising), we observe that Wikipedia appears in over 80% of results pages for some query types and is by far the most prevalent individual content source across all query types. More generally, our results provide empirical information to inform a nascent but rapidly-growing debate surrounding a highly consequential question: Do users provide enough value to intelligent technologies that they should receive more of the economic benefits from intelligent technologies? 
    more » « less