skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1527510

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the era of big data, many new algorithms are developed to try and find the most efficient way to perform computations with massive amounts of data. However, what is often overlooked is the preprocessing step for many of these applications. The Data Integration Benchmark Suite (DIBS) was designed to understand the characteristics of dataset transformations in a hardware agnostic way. While on the surface these applications have a high amount of data parallelism, there are caveats in their specification that can potentially affect this characteristic. Even still, OpenCL can be an effective deployment environment for these applications. In this work we take a subset of the data transformations from each category presented in DIBS and implement them in OpenCL to evaluate their performance for heterogeneous systems. For targeting heterogeneous systems, we take a common application and attempt to deploy it to three platforms targetable by OpenCL (CPU, GPU, and FPGA). The applications are evaluated by their average transformation data rate. We illustrate the advantages of each compute device in the data integration space along with different communications schemes allowed for host/device communication in the OpenCL platform. 
    more » « less
  2. FPGAs offer a heterogenous compute solution to the continuous de- sire for increased performance by enabling the creation of application- specific hardware that accelerates computation. While the barrier to entry has historically been steep, advances in High Level Synthe- sis (HLS) are making FPGAs more accessible. Specifically, the Intel FPGA OpenCL SDK allows software designers to abstract away low level details of architecting hardware on an FPGA and allows them to author computational kernels in a higher level language. Furthermore, Intel has developed a system that incorporates both a multicore Xeon CPU and Arria 10 FPGA into the same chip package as part of the Heterogeneous Accelerator Research Program (HARP) that can be targeted by their SDK. In this work, we target the second iteration of the HARP platform (HARPv2) using HLS through porting of OpenCL kernels originally written for FPGAs connected via a PCIe bus. We evaluate the HARPv2 system’s performance against previously reported results, explore the portability of kernels through a hardware design space search, and empirically show the benefits of using the shared virtual memory (SVM) abstraction over explicit reads and writes. 
    more » « less