Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Although the serpentinite‐hosted Lost City hydrothermal field (LCHF) was discovered more than 20 years ago, it remains unclear whether and how the presence of microbes affects the mineralogy and textures of the hydrothermal chimney structures. Most chimneys have flow textures comprised of mineral walls bounding paleo‐channels, which are preserved in inactive vent structures to a varying degree. Brucite lines the internal part of these channels, while aragonite dominates the exterior. Calcite is also present locally, mostly associated with brucite. Based on a combination of microscopic and geochemical analyses, we interpret brucite, calcite, and aragonite as primary minerals that precipitate abiotically from mixing seawater and hydrothermal fluids. We also observed local brucite precipitation on microbial filaments and, in some cases, microbial filaments may affect the growth direction of brucite crystals. Brucite is more fluorescent than carbonate minerals, possibly indicating the presence of organic compounds. Our results point to brucite as an important substrate for microbial life in alkaline hydrothermal systems.more » « less
-
Abstract Carbonate‐brucite chimneys are a characteristic of low‐ to moderate‐temperature, ultramafic‐hosted alkaline hydrothermal systems, such as the Lost City hydrothermal field located on the Atlantis Massif at 30°N near the Mid‐Atlantic Ridge. These chimneys form as a result of mixing between warm, serpentinization‐derived vent fluids and cold seawater. Previous work has documented the evolution in mineralogy and geochemistry associated with the aging of the chimneys as hydrothermal activity wanes. However, little is known about spatial heterogeneities within and among actively venting chimneys. New mineralogical and geochemical data (87Sr/86Sr and stable C, O, and clumped isotopes) indicate that the brucite and calcite precipitate at elevated temperatures in vent fluid‐dominated domains in the interior of chimneys. Exterior zones dominated by seawater are brucite‐poor and aragonite is the main carbonate mineral. Carbonates record mostly out of equilibrium oxygen and clumped isotope signatures due to rapid precipitation upon vent fluid‐seawater mixing. On the other hand, the carbonates precipitate closer to carbon isotope equilibrium, with dissolved inorganic carbon in seawater as the dominant carbon source and have δ13C values within the range of marine carbonates. Our data suggest that calcite is a primary mineral in the active hydrothermal chimneys and does not exclusively form as a replacement of aragonite during later alteration with seawater. Elevated formation temperatures and lower87Sr/86Sr relative to aragonite in the same sample suggest that calcite may be the first carbonate mineral to precipitate.more » « less
-
Hansell, DA; Carlson, CA (Ed.)The transport and transformation of carbon in subseafloor environments is a significant component of past, present, and future global fluxes. Seawater’s dissolved organic matter (DOM) enters the subseafloor and undergoes complex reactions including microbial processing, interactions with the rock matrix, and thermal restructuring and remineralization to carbon dioxide. Large shifts in concentrations, isotopic compositions, and molecular abundances provide a rich source of information about the environments through which fluids have circulated. Broad patterns linking geological settings to the fate of organic molecules can now be drawn, including the wide-scale removal of seawater DOM in ridge-flank systems, and large additions of abiotically synthesized compounds into fluids that interact with mantle rocks. Outstanding questions remain concerning the role of hydrothermal circulation as a source of refractory organic matter and its impact on the isotopic signature of deep oceanic DOM.more » « lessFree, publicly-accessible full text available May 15, 2025
-
Large volumes of seawater have passed through the rocky subseafloor throughout Earth’s history. The scale of circulation is sufficiently large to impact the cycling of marine dissolved organic carbon (DOC), one of the largest pools of reduced carbon on Earth whose sources and sinks remain enigmatic, and to sequester carbon over geologic timescales. While the fate of DOC in numerous mafic systems has been examined, no previous reports are available on the less studied but still abundant ultramafic systems. We analyzed the concentration and composition of DOC from the Lost City hydrothermal field (30°N, Mid-Atlantic Ridge), a long-lived ultramafic system with minimal magmatic input. We show that per liter of seawater, more DOC is removed and a rate >650 times faster rate than in mafic ridge flank systems. Simultaneously, newly synthesized 14C-free organics are exported into the water column, adding a pre-aged component to the deep DOC pool. The sequestration of oceanic organic molecules onto minerals could partially account for the substantial total organic carbon present in ultramafic rocks, which is currently interpreted as evidence of chemoautotrophy or abiotic synthesis.more » « less