skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1542182

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The structural, magnetic and magnetocaloric properties of Fe deficient Pr2-xNdxFe17 (x = 0.5, 0.7) alloys prepared by arc-melting and melt-spinning have been investigated. The room temperature x-ray diffraction patterns show that the samples are nearly single-phase and crystallize in the rhombohedral Th2Zn17-type crystal structure. The Curie temperatures determined from the thermomagnetic curves are 302 K and 307 K for Pr1.5Nd0.5Fe17 and Pr1.3Nd0.7Fe17, respectively. The peak magnetic entropy change and the relative cooling power at field change of 50 kOe are 3.01 J/kgK and 345 J/kg for Pr1.5Nd0.5Fe17, and 4.31 J/kgK and 487 J/kg for Pr1.3Nd0.7Fe17, respectively. The absence of magnetic and thermal hysteresis with relatively high cooling efficiency suggests that the alloys have potential for magnetic refrigeration. 
    more » « less