skip to main content


Search for: All records

Award ID contains: 1543963

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Summary

    A chimeric contig is contig that has been incorrectly assembled, i.e. a contig that contains one or more mis-joins. The detection of chimeric contigs can be carried out either by aligning assembled contigs to genome-wide maps (e.g. genetic, physical or optical maps) or by mapping sequenced reads to the assembled contigs. Here, we introduce a software tool called Chimericognizer that takes advantage of one or more Bionano Genomics optical maps to accurately detect and correct chimeric contigs. Experimental results show that Chimericognizer is very accurate, and significantly better than the chimeric detection method offered by the Bionano Hybrid Scaffold pipeline. Chimericognizer can also detect and correct chimeric optical molecules.

    Availability and implementation

    https://github.com/ucrbioinfo/Chimericognizer

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  2. Abstract Motivation

    De novo genome assembly is a challenging computational problem due to the high repetitive content of eukaryotic genomes and the imperfections of sequencing technologies (i.e. sequencing errors, uneven sequencing coverage and chimeric reads). Several assembly tools are currently available, each of which has strengths and weaknesses in dealing with the trade-off between maximizing contiguity and minimizing assembly errors (e.g. mis-joins). To obtain the best possible assembly, it is common practice to generate multiple assemblies from several assemblers and/or parameter settings and try to identify the highest quality assembly. Unfortunately, often there is no assembly that both maximizes contiguity and minimizes assembly errors, so one has to compromise one for the other.

    Results

    The concept of assembly reconciliation has been proposed as a way to obtain a higher quality assembly by merging or reconciling all the available assemblies. While several reconciliation methods have been introduced in the literature, we have shown in one of our recent papers that none of them can consistently produce assemblies that are better than the assemblies provided in input. Here we introduce Novo&Stitch, a novel method that takes advantage of optical maps to accurately carry out assembly reconciliation (assuming that the assembled contigs are sufficiently long to be reliably aligned to the optical maps, e.g. 50 Kbp or longer). Experimental results demonstrate that Novo&Stitch can double the contiguity (N50) of the input assemblies without introducing mis-joins or reducing genome completeness.

    Availability and implementation

    Novo&Stitch can be obtained from https://github.com/ucrbioinfo/Novo_Stitch.

     
    more » « less
  3. Summary

    Cowpea (Vigna unguiculata[L.] Walp.) is a major crop for worldwide food and nutritional security, especially in sub‐Saharan Africa, that is resilient to hot and drought‐prone environments. An assembly of the single‐haplotype inbred genome of cowpea IT97K‐499‐35 was developed by exploiting the synergies between single‐molecule real‐time sequencing, optical and genetic mapping, and an assembly reconciliation algorithm. A total of 519 Mb is included in the assembled sequences. Nearly half of the assembled sequence is composed of repetitive elements, which are enriched within recombination‐poor pericentromeric regions. A comparative analysis of these elements suggests that genome size differences betweenVignaspecies are mainly attributable to changes in the amount ofGypsyretrotransposons. Conversely, genes are more abundant in more distal, high‐recombination regions of the chromosomes; there appears to be more duplication of genes within the NBS‐LRR and the SAUR‐like auxin superfamilies compared with other warm‐season legumes that have been sequenced. A surprising outcome is the identification of an inversion of 4.2 Mb among landraces and cultivars, which includes a gene that has been associated in other plants with interactions with the parasitic weedStriga gesnerioides. The genome sequence facilitated the identification of a putative syntelog for multiple organ gigantism in legumes. A revised numbering system has been adopted for cowpea chromosomes based on synteny with common bean (Phaseolus vulgaris). An estimate of nuclear genome size of 640.6 Mbp based on cytometry is presented.

     
    more » « less
  4. Due to the current limitations of sequencing technologies, de novo genome assembly is typically carried out in two stages, namely contig (sequence) assembly and scaffolding. While scaffolding is computationally easier than sequence assembly, the scaffolding problem can be challenging due to the high repetitive content of eukaryotic genomes, possible mis-joins in assembled contigs and inaccuracies in the linkage information. Genome scaffolding tools either use paired-end/mate-pair/linked/Hi-C reads or genome-wide maps (optical, physical or genetic) as linkage information. Optical maps (in particular Bionano Genomics maps) have been extensively used in many recent large-scale genome assembly projects (e.g., goat, apple, barley, maize, quinoa, sea bass, among others). However, the most commonly used scaffolding tools have a serious limitation: they can only deal with one optical map at a time, forcing users to alternate or iterate over multiple maps. In this paper, we introduce a novel scaffolding algorithm called OMGS that for the first time can take advantages of multiple optical maps. OMGS solves several optimization problems to generate scaffolds with optimal contiguity and correctness. Extensive experimental results demonstrate that our tool outperforms existing methods when multiple optical maps are available, and produces comparable scaffolds using a single optical map. OMGS can be obtained from GIT. 
    more » « less
  5. Cancer is a complex disease associated with abnormal DNA mutations. Not all tumors are cancerous and not all cancers are the same. Correct cancer type diagnosis can indicate the most effective drug therapy and increase survival rate. At the molecular level, it has been shown that cancer type classification can be carried out from the analysis of somatic point mutation. However, the high dimensionality and sparsity of genomic mutation data, coupled with its small sample size has been a hindrance in accurate classification of cancer. We address these problems by introducing a novel classification method called mClass that accounts for the sparsity of the data. mClass is a feature selection method that ranks genes based on their similarity across samples and employs their normalized mutual information to determine the set of genes that provide optimal classification accuracy. Experimental results on TCGA datasets show that mClass significantly improves testing accuracy compared to DeepGene, which is the state-of-the-art in cancer-type classification based on somatic mutation data. In addition, when compared with other cancer gene prediction tools, the set of genes selected by mClass contains the highest number of genes in top 100 genes listed in the Cancer Gene Census. mClass is available at https://github.com/mdahasan/mClass. 
    more » « less