skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1544857

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Dynamic walking on bipedal robots has evolved from an idea in science fiction to a practical reality. This is due to continued progress in three key areas: a mathematical understanding of locomotion, the computational ability to encode this mathematics through optimization, and the hardware capable of realizing this understanding in practice. In this context, this review outlines the end-to-end process of methods that have proven effective in the literature for achieving dynamic walking on bipedal robots. We begin by introducing mathematical models of locomotion, from reduced-order models that capture essential walking behaviors to hybrid dynamical systems that encode the full-order continuous dynamics along with discrete foot-strike dynamics. These models form the basis for gait generation via (nonlinear) optimization problems. Finally, models and their generated gaits merge in the context of real-time control, wherein walking behaviors are translated to hardware. The concepts presented are illustrated throughout in simulation, and experimental instantiations on multiple walking platforms are highlighted to demonstrate the ability to realize dynamic walking on bipedal robots that is both agile and efficient. 
    more » « less
  2. This paper tackles a problem in line-assisted VO/VSLAM: accurately solving the least squares pose optimization with unreliable 3D line input. The solution we present is good line cutting, which extracts the most-informative sub-segment from each 3D line for use within the pose optimization formulation. By studying the impact of line cutting towards the information gain of pose estimation in line-based least squares problem, we demonstrate the applicability of improving pose estimation accuracy with good line cutting. To that end, we describe an efficient algorithm that approximately approaches the joint optimization problem of good line cutting. The proposed algorithm is integrated into a state-of-the-art line-assisted VSLAM system. When evaluated in two target scenarios of line-assisted VO/VSLAM, low-texture and motion blur, the accuracy of pose tracking is improved, while the robustness is preserved. 
    more » « less