We develop a new heavy quark transport model, QLBT, to simulate the dynamical propagation of heavy quarks inside the quark-gluon plasma (QGP) created in relativistic heavy-ion collisions. Our QLBT model is based on the linear Boltzmann transport (LBT) model with the ideal QGP replaced by a collection of quasi-particles to account for the non-perturbative interactions among quarks and gluons of the hot QGP. The thermal masses of quasi-particles are fitted to the equation of state from lattice QCD simulations using the Bayesian statistical analysis method. Combining QLBT with our advanced hybrid fragmentation-coalescence hadronization approach, we calculate the nuclear modification factor
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
QLBT: a linear Boltzmann transport model for heavy quarks in a quark-gluon plasma of quasi-particles
Abstract and the elliptic flow$$R_\mathrm {AA}$$ of$$v_2$$ D mesons at the Relativistic Heavy-Ion Collider and the Large Hadron Collider. By comparing our QLBT calculation to the experimental data on theD meson and$$R_\mathrm {AA}$$ , we extract the heavy quark transport parameter$$v_2$$ and diffusion coefficient$$\hat{q}$$ in the temperature range of$$D_\mathrm {s}$$ , and compare them with the lattice QCD results and other phenomenological studies.$$1-4~T_\mathrm {c}$$