skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1552185

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Androgens are important mediators of male‐male competition in many primate species. Male gorillas' morphology is consistent with a reproductive strategy that relies heavily on androgen‐dependent traits (e.g., extreme size and muscle mass). Despite possessing characteristics typical of species with an exclusively single‐male group structure, multimale groups with strong dominance hierarchies are common in mountain gorillas. Theory predicts that androgens should mediate their dominance hierarchies, and potentially vary with the type of group males live in. We validated the use of a testosterone enzyme immunoassay (T‐EIA R156/7, CJ Munro, UC‐Davis) for use with mountain gorilla fecal material by (1) examining individual‐level androgen responses to competitive events, and (2) isolating assay‐specific hormone metabolites via high‐performance liquid chromatography. Males had large (2.6‐ and 6.5‐fold), temporary increases in fecal androgen metabolite (FAM) after competitive events, and most captured metabolites were testosterone or 5α‐dihydrotestosterone‐like androgens. We then examined the relationship between males' dominance ranks, group type, and FAM concentrations. Males in single‐male groups had higher FAM concentrations than males in multimale groups, and a small pool of samples from solitary males suggested they may have lower FAM than group‐living peers. However, data from two different time periods (n = 1610 samples) indicated there was no clear relationship between rank and FAM concentrations, confirming results from the larger of two prior studies that measured urinary androgens. These findings highlight the need for additional research to clarify the surprising lack of a dominance hierarchy/androgen relationship in mountain gorillas.

     
    more » « less
  2. Abstract

    Living in a rapidly changing environment can alter stress physiology at the population level, with negative impacts on health, reproductive rates, and mortality that may ultimately result in species decline. Small, isolated animal populations where genetic diversity is low are at particular risks, such as endangered Virunga mountain gorillas (Gorilla beringei beringei). Along with climate change‐associated environmental shifts that are affecting the entire population, subpopulations of the Virunga gorillas have recently experienced extreme changes in their social environment. As the growing population moves closer to the forest's carrying capacity, the gorillas are coping with rising population density, increased frequencies of interactions between social units, and changing habitat use (e.g., more overlapping home ranges and routine ranging at higher elevations). Using noninvasive monitoring of fecal glucocorticoid metabolites (FGM) on 115 habituated Virunga gorillas, we investigated how social and ecological variation are related to baseline FGM levels, to better understand the adaptive capacity of mountain gorillas and monitor potential physiological indicators of population decline risks. Generalized linear mixed models revealed elevated mean monthly baseline FGM levels in months with higher rainfall and higher mean maximum and minimum temperature, suggesting that Virunga gorillas might be sensitive to predicted warming and rainfall trends involving longer, warmer dry seasons and more concentrated and extreme rainfall occurrences. Exclusive use of smaller home range areas was linked to elevated baseline FGM levels, which may reflect reduced feeding efficiency and increased travel efforts to actively avoid neighboring groups. The potential for additive effects of stress‐inducing factors could have short‐ and long‐term impacts on the reproduction, health, and ultimately survival of the Virunga gorilla population. The ongoing effects of environmental changes and population dynamics must be closely monitored and used to develop effective long‐term conservation strategies that can help address these risk factors.

     
    more » « less
  3. Abstract Socioecological theory predicts that male parenting among mammals should be rare due to the large payoffs of prioritizing mating effort over parenting. Although these predictions are generally met, in some promiscuous primate species males overcome this by identifying their offspring, and providing benefits such as protection and resource access. Mountain gorillas, which often organize into multi-male groups, are an intriguing exception. Males frequently affiliate with infants despite not discriminating their own from other males’ offspring, raising questions about the function of this behavior. Here we demonstrate that, independent of multiple controls for rank, age, and siring opportunities, male gorillas who affiliated more with all infants, not only their own, sired more offspring than males who affiliated less with young. Predictive margins indicate males in the top affiliation tertile can expect to sire approximately five times more infants than males in the bottom tertile, across the course of their reproductive careers. These findings establish a link between males’ fitness and their associations with infants in the absence of kin discrimination or high paternity certainty, and suggest a strategy by which selection could generate more involved male parenting among non-monogamous species. 
    more » « less
  4. Abstract In humans and chimpanzees, most intraspecific killing occurs during coalitionary intergroup conflict. In the closely related genus Gorilla, such behavior has not been described. We report three cases of multi-male, multi-female wild mountain gorilla ( G. beringei ) groups attacking extra-group males. The behavior was strikingly similar to reports in chimpanzees, but was never observed in gorillas until after a demographic transition left ~25% of the population living in large social groups with multiple (3+) males. Resource competition is generally considered a motivator of great apes’ (including humans) violent intergroup conflict, but mountain gorillas are non-territorial herbivores with low feeding competition. While adult male gorillas have a defensible resource (i.e. females) and nursing/pregnant females are likely motivated to drive off potentially infanticidal intruders, the participation of others (e.g. juveniles, sub-adults, cycling females) is harder to explain. We speculate that the potential for severe group disruption when current alpha males are severely injured or killed may provide sufficient motivation when the costs to participants are low. These observations suggest that the gorilla population’s recent increase in multi-male groups facilitated the emergence of such behavior, and indicates social structure is a key predictor of coalitionary aggression even in the absence of meaningful resource stress. 
    more » « less