skip to main content


Search for: All records

Award ID contains: 1552784

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The effect of DNA methylation on the regulation of gene expression has been extensively discussed in the literature. However, the potential association between DNA methylation and alternative splicing is not understood well. In this study, we integrated multiple omics data types from The Cancer Genome Atlas (TCGA) and systematically examined the relationship between DNA methylation and alternative splicing. Using the methylation data and exon expression data, we identified many CpG sites significantly associated with exon expression in various types of cancers. We further observed that the direction and strength of significant CpG-exon correlation tended to be consistent across different cancer contexts, indicating that some CpG-exon correlation patterns reflect fundamental biological mechanisms that transcend tissue- and cancer- types. We also discovered that CpG sites correlated with exon expressions were more likely to be associated with patient survival outcomes compared to CpG sites that did not correlate with exon expressions. Furthermore, we found that CpG sites were more strongly correlated with exon expression than expression of isoforms harboring the corresponding exons. This observation suggests that a major effect of CpG methylation on alternative splicing may be related to the inclusion or exclusion of exons, which subsequently impacts the relative usage of various isoforms. Overall, our study revealed correlation patterns between DNA methylation and alternative splicing, which provides new insights into the role of methylation in the transcriptional process.

     
    more » « less
  2. Abstract Biomarkers predictive of drug-specific outcomes are important tools for personalized medicine. In this study, we present an integrative analysis to identify miRNAs that are predictive of drug-specific survival outcome in cancer. Using the clinical data from TCGA, we defined subsets of cancer patients who suffered from the same cancer and received the same drug treatment, which we call cancer-drug groups. We then used the miRNA expression data in TCGA to evaluate each miRNA’s ability to predict the survival outcome of patients in each cancer-drug group. As a result, the identified miRNAs are predictive of survival outcomes in a cancer-specific and drug-specific manner. Notably, most of the drug-specific miRNA survival markers and their target genes showed consistency in terms of correlations in their expression and their correlations with survival. Some of the identified miRNAs were supported by published literature in contexts of various cancers. We explored several additional breast cancer datasets that provided miRNA expression and survival data, and showed that our drug-specific miRNA survival markers for breast cancer were able to effectively stratify the prognosis of patients in those additional datasets. Together, this analysis revealed drug-specific miRNA markers for cancer survival, which can be promising tools toward personalized medicine. 
    more » « less
  3. null (Ed.)
    Abstract The ability to predict the efficacy of cancer treatments is a longstanding goal of precision medicine that requires improved understanding of molecular interactions with drugs and the discovery of biomarkers of drug response. Identifying genes whose expression influences drug sensitivity can help address both of these needs, elucidating the molecular pathways involved in drug efficacy and providing potential ways to predict new patients’ response to available therapies. In this study, we integrated cancer type, drug treatment, and survival data with RNA-seq gene expression data from The Cancer Genome Atlas to identify genes and gene sets whose expression levels in patient tumor biopsies are associated with drug-specific patient survival using a log-rank test comparing survival of patients with low vs. high expression for each gene. This analysis was successful in identifying thousands of such gene–drug relationships across 20 drugs in 14 cancers, several of which have been previously implicated in the respective drug’s efficacy. We then clustered significant genes based on their expression patterns across patients and defined gene sets that are more robust predictors of patient outcome, many of which were significantly enriched for target genes of one or more transcription factors, indicating several upstream regulatory mechanisms that may be involved in drug efficacy. We identified a large number of genes and gene sets that were potentially useful as transcript-level biomarkers for predicting drug-specific patient survival outcome. Our gene sets were robust predictors of drug-specific survival and our results included both novel and previously reported findings, suggesting that the drug-specific survival marker genes reported herein warrant further investigation for insights into drug mechanisms and for validation as biomarkers to aid cancer therapy decisions. 
    more » « less
  4. Wei, Yanjie ; Li, Min ; Skums, Pavel ; Cai, Zhipeng (Ed.)
    Novel discoveries of biomarkers predictive of drug-specific responses not only play a pivotal role in revealing the drug mechanisms in cancers, but are also critical to personalized medicine. In this study, we identified drug-specific biomarkers by integrating protein expression data, drug treatment data and survival outcome of 7076 patients from The Cancer Genome Atlas (TCGA). We first defined cancer-drug groups, where each cancer-drug group contains patients with the same cancer and treated with the same drug. For each protein, we stratified the patients in each cancer-drug group by high or low expression of the protein, and applied log-rank test to examine whether the stratified patients show significant survival difference. We examined 336 proteins in 98 cancer-drug groups and identified 65 protein-cancer-drug combinations involving 55 unique proteins, where the protein expression levels are predictive of drug-specific survival outcomes. Some of the identified proteins were supported by published literature. Using the gene expression data from TCGA, we found the mRNA expression of ∼11% of the drug-specific proteins also showed significant correlation with drug-specific survival, and most of these drug-specific proteins and their corresponding genes are strongly correlated. 
    more » « less
  5. Wei, Yanjie ; Li, Min ; Skums, Pavel ; Cai, Zhipeng (Ed.)
    Long-time evolution has shaped a harmonious host-microbiota symbiosis consisting of intestinal microbiota in conjunction with the host immune system. Inflammatory bowel disease (IBD) is a result of the dysbiotic microbial composition together with aberrant mucosal immune responses, while the underlying mechanism is far from clear. In this report, we creatively proposed that when correlating with the host metabolism, functional microbial communities matter more than individual bacteria. Based on this assumption, we performed a systematic analysis to characterize the co-metabolism of host and gut microbiota established on a set of newly diagnosed Crohn’s disease (CD) samples and healthy controls. From the host side, we applied gene set enrichment analysis on host mucosal proteome data to identify those host pathways associated with CD. At the same time, we applied community detection analysis on the metagenomic data of mucosal microbiota to identify those microbial communities, which were assembled for a functional purpose. Then, the correlation analysis between host pathways and microbial communities was conducted. We discovered two microbial communities negatively correlated with IBD enriched host pathways. The dominant genera for these two microbial communities are known as health-benefits and could serve as a reference for designing complex beneficial microorganisms for IBD treatment. The correlated host pathways are all relevant to MHC antigen presentation pathways, which hints toward a possible mechanism of immune-microbiota cross talk underlying IBD. 
    more » « less
  6. Cai, GuoShuai (Ed.)
    With the rapid advances of various single-cell technologies, an increasing number of single-cell datasets are being generated, and the computational tools for aligning the datasets which make subsequent integration or meta-analysis possible have become critical. Typically, single-cell datasets from different technologies cannot be directly combined or concatenated, due to the innate difference in the data, such as the number of measured parameters and the distributions. Even datasets generated by the same technology are often affected by the batch effect. A computational approach for aligning different datasets and hence identifying related clusters will be useful for data integration and interpretation in large scale single-cell experiments. Our proposed algorithm called JSOM, a variation of the Self-organizing map, aligns two related datasets that contain similar clusters, by constructing two maps—low-dimensional discretized representation of datasets–that jointly evolve according to both datasets. Here we applied the JSOM algorithm to flow cytometry, mass cytometry, and single-cell RNA sequencing datasets. The resulting JSOM maps not only align the related clusters in the two datasets but also preserve the topology of the datasets so that the maps could be used for further analysis, such as clustering. 
    more » « less