skip to main content


Search for: All records

Award ID contains: 1553031

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Constructing synthetic cells has recently become an appealing area of research. Decades of research in biochemistry and cell biology have amassed detailed part lists of components involved in various cellular processes. Nevertheless, recreating any cellular process in vitro in cell‐sized compartments remains ambitious and challenging. Two broad features or principles are key to the development of synthetic cells—compartmentalization and self‐organization/spatiotemporal dynamics. In this review article, we discuss the current state of the art and research trends in the engineering of synthetic cell membranes, development of internal compartmentalization, reconstitution of self‐organizing dynamics, and integration of activities across scales of space and time. We also identify some research areas that could play a major role in advancing the impact and utility of engineered synthetic cells.

    This article is categorized under:

    Biology‐Inspired Nanomaterials > Lipid‐Based Structures

    Biology‐Inspired Nanomaterials > Protein and Virus‐Based Structures

     
    more » « less
  2. Background

    Self‐sustained oscillations are a ubiquitous and vital phenomenon in living systems. From primitive single‐cellular bacteria to the most sophisticated organisms, periodicities have been observed in a broad spectrum of biological processes such as neuron firing, heart beats, cell cycles, circadian rhythms, etc. Defects in these oscillators can cause diseases from insomnia to cancer. Elucidating their fundamental mechanisms is of great significance to diseases, and yet challenging, due to the complexity and diversity of these oscillators.

    Results

    Approaches in quantitative systems biology and synthetic biology have been most effective by simplifying the systems to contain only the most essential regulators. Here, we will review major progress that has been made in understanding biological oscillators using these approaches. The quantitative systems biology approach allows for identification of the essential components of an oscillator in an endogenous system. The synthetic biology approach makes use of the knowledge to design the simplest,de novooscillators in both live cells and cell‐free systems. These synthetic oscillators are tractable to further detailed analysis and manipulations.

    Conclusion

    With the recent development of biological and computational tools, both approaches have made significant achievements.

     
    more » « less