skip to main content

Search for: All records

Award ID contains: 1553593

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study investigates the variability of water mass transformation (WMT) within the Weddell Gyre (WG). The WG serves as a pivotal site for the meridional overturning circulation (MOC) and ocean ventilation because it is the primary origin of the largest volume of water mass in the global ocean, Antarctic Bottom Water (AABW). Recent mooring data suggest substantial seasonal and interannual variability of AABW properties exiting the WG, and studies have linked the variability to the large-scale climate forcings affecting wind stress in the WG region. However, the specific thermodynamic mechanisms that link variability in surface forcings to variability in water mass transformations and AABW export remain unclear. This study explores WMT variability via WMT volume budgets derived from Walin’s classic WMT framework, using three state-of-the-art, data-assimilating ocean reanalyses: Estimating the Circulation and Climate of the Ocean state estimate (ECCOv4), Southern Ocean State Estimate (SOSE) and Simple Ocean Data Assimilation (SODA). From the model outputs, we diagnose a closed form of the water mass budget for AABW that explicitly accounts for transport across the WG boundary, surface forcing, interior mixing, and numerical mixing. We examine the annual mean climatology of the WMT budget terms, the seasonal climatology, and finally the interannual variability. In ECCO and SOSE, we see strong interannual variability in AABW volume budget. In SOSE, we find an accelerating loss of AABW, driven largely by interior mixing and changes in surface salt fluxes. ECCO shows a similar trend during a 3-yr time period beyond what is covered in SOSE, but also reveals such trends to be part of interannual variability over a much longer time period. Overall, ECCO provides the most useful timeseries for understanding the processes and mechanisms that drive WMT and export variability. SODA, in contrast, displays unphysically large variability in AABW volume, which we attribute to its data assimilation scheme. We examine correlations between the WMT budgets and large-scale climate indices, including ENSO and SAM; no strong relationships emerge, suggesting that these reanalysis products may not reproduce the AABW export pathways and mechanisms hypothesized from observations. 
    more » « less
  2. null (Ed.)
    Abstract Variation in upper ocean heat content is a critical factor in understanding global climate variability. Using temperature anomaly budgets in a two-decade-long physically consistent ocean state estimate (ECCOv4r3, 1992-2015), we describe the balance between atmospheric forcing and ocean transport mechanisms for different depth horizons and at varying temporal and spatial resolutions. Advection dominates in the tropics, while forcing is most relevant at higher latitudes and in parts of the subtropics, but the balance of dominant processes changes when integrating over greater depths and considering longer time scales. While forcing is shown to increase with coarser resolution, overall the heat budget balance between it and advection is remarkably insensitive to spatial scale. A novel perspective on global ocean heat content variability was made possible by combining unsupervised classification with a measure of temporal variability in heat budget terms to identify coherent dynamical regimes with similar underlying mechanisms, which are consistent with prior research. The vast majority of the ocean includes significant contributions by both forcing and advection. However advection-driven regions were identified that coincide with strong currents, such as western boundary currents, the Antarctic Circumpolar Current and the tropics, while forcing-driven regions were defined by shallower wintertime mixed layers and weak velocity fields. This identification of comprehensive dynamical regimes and the sensitivity of the ocean heat budget analysis to exact resolution (for different depth horizons and at varying temporal and spatial resolutions) should provide a useful orientation for future studies of ocean heat content variability in specific ocean regions. 
    more » « less
  3. null (Ed.)
  4. The Southern Ocean overturning circulation is driven by winds, heat fluxes, and freshwater sources. Among these sources of freshwater, Antarctic sea-ice formation and melting play the dominant role. Even though ice-shelf melt is relatively small in magnitude, it is located close to regions of convection, where it may influence dense water formation. Here, we explore the impacts of ice-shelf melting on Southern Ocean water mass transformation (WMT) using simulations from the Energy Exascale Earth System Model (E3SM) both with and without the explicit representation of melt fluxes from beneath Antarctic ice shelves. We find that ice-shelf melting enhances transformation of Upper Circumpolar Deep Water (UCDW), converting it to lower density values. While the overall differences in Southern Ocean WMT between the two simulations are moderate, freshwater fluxes produced by ice-shelf melting have a further, indirect impact on the Southern Ocean overturning circulation through their interaction with sea-ice formation and melting, which also cause considerable upwelling. We further find that surface freshening and cooling by ice-shelf melting causes increased Antarctic sea-ice production and stronger density stratification near the Antarctic coast. In addition, ice-shelf melting causes decreasing air temperature, which may be directly related to sea-ice expansion. The increased stratification reduces vertical heat transport from the deeper ocean. Although the addition of ice-shelf melting processes leads to no significant changes in Southern Ocean WMT, the simulations and analysis conducted here point to a relationship between increased Antarctic ice-shelf melting and the increased role of sea ice in Southern Ocean overturning. 
    more » « less