skip to main content


Search for: All records

Award ID contains: 1553987

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A device for measuring a plurality of material properties is designed to include accurate sensors configured to consecutively obtain thermal conductivity, electrical conductivity, and Seebeck coefficient of a single sample while maintaining a vacuum or inert gas environment. Four major design factors are identified as sample-heat spreader mismatch, radiation losses, parasitic losses, and sample surface temperature variance. The design is analyzed using finite element methods for high temperature ranges up to 1000°C as well as ultra-high temperatures up to 2500°C. A temperature uncertainty of 0.46% was estimated for a sample with cold and hot sides at 905.1 and 908.5°C, respectively. The uncertainty at 1000°C was calculated to be 0.7% for a ?T of 5°C between the hot and cold sides. The thermal conductivity uncertainty was calculated to be -8.6% at ~900°C for a case with radiative gains, and +8.2% at ~1000°C for a case with radiative losses, indicating the sensitivity of the measurement to the temperature of the thermal guard in relation to the heat spreader and sample temperature. Lower limits of -17 and -13% error in thermal conductivity measurements were estimated at the ultra-high temperature of ~2500°C for a single-stage and double-stage radiation shield, respectively. It is noted that this design is not limited to electro-thermal characterization and will enable measurement of ionic conductivity and surface temperatures of energy materials under realistic operating conditions in extreme temperature environments. 
    more » « less