Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper surveys the rapidly growing field of performance-based wind engineering (PBWE) of engineered systems, with focus on not only how PBWE has evolved since its early incarnations inspired by performance-based seismic engineering, but also the unique challenges of PBWE and the research that continues to emerge to tackle them. The limitations of traditional prescriptive wind design approaches are discussed with the aim of illustrating how such approaches are inadequate for providing acceptable building performance during extreme wind events, thus motivating why performance-based strategies for wind engineering are gaining traction and are poised to complement, if not replace, current approaches to wind design. In this respect, the current state of knowledge on the factors that affect building performance via extreme structural response, damage to the envelope system, and nonstructural components, is reviewed and challenges are identified. Lastly, the potential benefit of integrating optimization methods is identified while acknowledging the computational difficulty associated with such approaches.more » « less
-
A Performance-Based Wind Engineering Framework for Engineered Building Systems Subject to HurricanesOver the past decade, significant research efforts have been dedicated to the development of performance-based wind engineering (PBWE). Notwithstanding these efforts, frameworks that integrate the damage assessment of the structural and envelope system are still lacking. In response to this need, the authors have recently proposed a PBWE framework that holistically treats envelope and structural damages through progressive multi-demand fragility models that capture the inherent coupling in the demands and damages. Similar to other PBWE methodologies, this framework is based on describing the hurricane hazard through a nominal straight and stationary wind event with constant rainfall and one-hour duration. This study aims to develop a PBWE framework based on a full description of the hurricane hazard in which the entire evolution of the storm track and time-dependent wind/rain fields is simulated. Hurricane-induced pressures impacting the building envelope are captured through the introduction of a non-stationary/-straight/-Gaussian wind pressure model. Time-dependent wind-driven rain is modeled through a computational fluid dynamics Eulerian multiphase framework with interpolation schemes for the rapid computation of wind-driven rain intensities over the building surface. Through the development of a conditional stochastic simulation algorithm, the envelope performance is efficiently characterized through probabilistic metrics associated with rare events of design interest. The framework is demonstrated through analyzing a 45-story archetype building located in Miami, FL, for which the envelope performance is estimated in terms of a suite of probabilistic damage and loss metrics. A comparative study is carried out in order to provide insights into the differences that can occur due to the use of nominal hurricane models.more » « less
-
Castanier, Bruno; Cepin, Marko; Bigaud, David; Berenguer, Christophe. (Ed.)
An official website of the United States government

Full Text Available