Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Silyloxyarenes were utilized as electrophilic coupling partners with amines in the synthesis of aniline derivatives. A diverse range of amine substrates were used, including cyclic or acyclic secondary amines, secondary anilines, and sterically hindered primary anilines. Additionally, a range of sterically hindered and unhindered primary aliphatic amines were employed, which have previously been challenging with other classes of aryl ether electrophiles. Orthogonal couplings of silyloxyarenes with aryl methyl ethers are illustrated, where selectivity between the two C−O electrophiles is determined by ligand control, thereby allowing complementary and selective late‐stage diversification of either electrophile. Finally, a sequential coupling displays the utility of this amination method along with the reversal in intrinsic reactivity between aryl methyl ethers and silyloxyarenes.more » « less
-
A new approach for the reduction of aryl ammonium salts to arenes or aryl silanes using nickel catalysis is reported. This method displays excellent ligand-controlled selectivity based on the N-heterocyclic carbene (NHC) ligand employed. Utilizing a large NHC in non-polar solvents generates aryl silanes, while small NHCs in polar solvents promote reduction to arenes. Several classes of aryl silanes can be accessed from simple aniline building blocks, including those useful for cross-couplings, oxidations, and halogenations. The reaction conditions are mild, functional group tolerant, and provide efficient access to a variety of benzene derivatives.more » « less
An official website of the United States government
