skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1566411

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dependent security labels (security labels that depend on program states) in various forms have been introduced to express rich information flow policies. They are shown to be essential in the verification of real-world software and hardware systems such as conference management systems, Android Apps, a MIPS processor and a TrustZone-like architecture. However, most work assumes that all (complex) labels are provided manually, which can both be error-prone and time-consuming. In this paper, we tackle the problem of automatic label inference for static information flow analyses with dependent security labels. In particular, we propose the first general framework to facilitate the design and validation (in terms of soundness and/or completeness) of inference algorithms. The framework models label inference as constraint solving and offers guidelines for sound and/or complete constraint solving. Under the framework, we propose novel constraint solving algorithms that are both sound and complete. Evaluation result on sets of constraints generated from secure and insecure variants of a MIPS processor suggests that the novel algorithms improve the performance of an existing algorithm by orders of magnitude and offers better scalability. 
    more » « less