Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A hierarchy of general circulation models (GCMs) is used to investigate the linearity of the response of the climate system to changes in Antarctic topography. Experiments were conducted with a GCM with either a slab ocean or fixed SSTs and sea ice, in which the West Antarctic ice sheet (WAIS) and coastal Antarctic topography were either lowered or raised in an idealized way. Additional experiments were conducted with a fully coupled GCM with topographic perturbations based on an ice-sheet model in which the WAIS collapses. The response over the continent is the same in all model configurations and is mostly linear. In contrast, the response has substantial nonlinear elements over the Southern Ocean that depend on the model configuration and are due to feedbacks with sea ice, ocean, and clouds. The atmosphere warms near the surface over much of the Southern Ocean and cools in the stratosphere over Antarctica, whether topography is raised or lowered. When topography is lowered, the Southern Ocean surface warming is due to strengthened southward atmospheric heat transport and associated enhanced storminess over the WAIS and the high latitudes of the Southern Ocean. When topography is raised, Southern Ocean warming is more limited and is associated with circulation anomalies. The response in the fully coupled experiments is generally consistent with the more idealized experiments, but the full-depth ocean warms throughout the water column whether topography is raised or lowered. These results indicate that ice sheet–climate system feedbacks differ depending on whether the Antarctic ice sheet is gaining or losing mass. Significance StatementThroughout Earth’s history, the Antarctic ice sheet was at times taller or shorter than it is today. The purpose of this study is to investigate how the atmosphere, sea ice, and ocean around Antarctica respond to changes in ice sheet height. We find that the response to lowering the ice sheet is not the opposite of the response to raising it, and that in either case the ocean surface near the continent warms. When the ice sheet is raised, the ocean warming is related to circulation changes; when the ice sheet is lowered, the ocean warming is from an increase in southward atmospheric heat transport. These results are important for understanding how the ice sheet height and local climate evolve together through time.more » « less
-
Abstract The West Antarctic Ice Sheet (WAIS) may have collapsed during the last interglacial period, between 132 000 and 116 000 years ago. The changes in topography resulting from WAIS collapse would be accompanied by significant changes in Antarctic surface climate, atmospheric circulation, and ocean conditions. Evidence of these changes may be recorded in water-isotope ratios in precipitation archived in the ice. We conduct high-resolution simulations with an isotope-enabled version of the Weather Research and Forecasting Model over Antarctica, with boundary conditions provided by climate model simulations with both present-day and lowered WAIS topography. The results show that while there is significant spatial variability, WAIS collapse would cause detectable isotopic changes at several locations where ice-core records have been obtained or could be obtained in the future. The most robust signals include elevatedδ18O at SkyTrain Ice Rise in West Antarctica and elevated deuterium excess andδ18O at Hercules Dome in East Antarctica. A combination of records from multiple sites would provide constraints on the timing, rate, and magnitude of past WAIS collapse.more » « less
-
Abstract Paleotemperature reconstructions from ice cores are mixed signals of changes in climate and ice‐surface elevation. A common, temperature‐based paleoaltimetry method suggests these signals can be disentangled by comparing two proxy locations with similar climates. The difference between the records is assumed to be due to elevation, which is estimated by scaling the temperature difference by a lapse rate. We investigate the uncertainty associated with this approach using a case study of the Antarctic Ice Sheet during the Last Glacial Maximum. From an ensemble of climate simulations, we extract modeled temperatures at locations of real ice cores. We find uncertainty on the order of hundreds of meters that results from spatial heterogeneity in non‐adiabatic temperature change, which itself stems in part from elevation‐induced atmospheric circulation change. Our findings suggest that caution is needed when interpreting temperature‐based paleoaltimetry results for ice sheets.more » « less
-
{"Abstract":["Contains the model output and topography files necessary to reproduce the results of "Linearity of the climate system response to raising and lowering West Antarctic and coastal Antarctic topography" by Andrew G. Pauling, Cecilia M. Bitz and Eric J. Steig. Published in Journal of Climate, https://doi.org/10.1175/JCLI-D-22-0416.1.<\/p>\n\nPlease download and extract the data from each of the tar.gz.files. A description of the directories, run names, and use of the topography files is given in the file readme.txt within the dataset.<\/p>"]}more » « less
-
{"Abstract":["This archive includes data and ipython notebooks to create the figures for the manuscript "Response of water isotopes in precipitation to a collapse of the West Antarctic Ice Sheet in high-resolution simulations with the Weather Research and Forecasting Model" submitted to Journal of Climate in August 2022.<\/p>\n\nModel output from WRFwiso and iCAM is in data.zip (saved as monthly means)<\/p>\n\nNotebooks and python modules are in scripts.zip<\/p>\n\nRequired python packages (all included in environment.yml):<\/p>\n\nnumpy<\/li>matplotlib<\/li>netcdf4<\/li>basemap<\/li>scipy<\/li>wrf-python<\/li>windspharm<\/li>metpy<\/li>intergrid<\/li>cmocean<\/li><\/ul>"]}more » « less
An official website of the United States government
