skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1604433

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study is part of the preliminary experimental investigations designed to assess the feasibility of using supercritical carbon dioxide (sCO2) in the vicinity of its critical point for thermal management applications. In the present study, sCO2 was used as a working fluid in a diffusion bonded 316/316L stainless steel test section having staggered micro pin fin array flow passages of hydraulic diameter 679 µm (0.679 mm). The test section was subjected to a single wall non-uniform heat flux boundary condition and was operated in a horizontal orientation. The primary objective was to characterize the heat transfer performance of sCO2 as it flows through the staggered pin fin array for experimental conditions that span its critical and pseudocritical point. Data analysis methods employing 2-D and 3-D heat transfer models of the test section were used to calculate the average heat transfer coefficients for a given set of experimental conditions. Experiments were conducted by varying the inlet temperature (18 ≤ T_in ≤ 50 °C) and for fixed mass flux (300 kg m-2 s-1), heat flux (40 W cm-2), and reduced pressure (1.1). Experimental data were also compared against the predictions of a correlation proposed for single phase flows in microchannel staggered diamond pin arrays. The correlation predicted the data within 4.3 % when the ratio, T_Bulk/T_PC exceeded 1. It was also found that the enhancement in the heat transfer, a result of employing staggered pin array flow geometry instead of microchannels, carries a commensurate penalty in pressure drop. 
    more » « less