skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1604483

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Polymorphic 1D MnO2nanostructures are widely applied in fields such as catalysis, sensing, and energy storage with the functionality mainly determined by the atomic patterns of their laterally exposed facets, which largely remain unclear so far. Herein, by high‐resolution transmission electron microscopy (HRTEM) imaging directly along their axial directions, the atomic structures of the outmost lateral facets of polymorphic MnO2nanowires are disclosed. To generalize the findings, four most commonly seen phases with characteristic tunnel structures are targeted, i.e., β‐, γ‐, α‐, and todorokite(t)‐MnO2, which are synthesized conventionally using a hydrothermal method reported in the literature. Axially imaging these MnO2nanowires via HRTEM, the {hkl} facets covering the lateral surfaces are accurately indexed, the atomic pattern of each {hkl} facet is revealed, and it is further coupled with the outmost tunnel configuration that can significantly affect the physicochemical property of MnO2materials via tunnel‐driven mass adsorption/transport. This work provides a reliable reference for atomic modeling of MnO2to benefit the pursuit of its structure–property relationship; in addition, it can benefit surface engineering strategies to better rationalize the facet growth control with optimized functionality. 
    more » « less