skip to main content


Search for: All records

Award ID contains: 1609549

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Crystals are ubiquitous in nature and are at the heart of material research, solid-state science, and quantum physics. Unfortunately, the controllability of solid-state crystals is limited by the complexity of many-body dynamics and the presence of defects. In contrast, synthetic crystal structures, realized by, e.g.,  optical lattices, have recently enabled the investigation of various physical processes in a controllable manner, and even the study of new phenomena. Past realizations of synthetic optical crystals were, however, limited in size and dimensionality. Here we theoretically propose and experimentally demonstrate optical frequency crystal of arbitrary dimensions, formed by hundreds of coupled spectral modes within an on-chip electro-optic frequency comb. We show a direct link between the measured optical transmission spectrum and the density of states of frequency crystals in one, two, three, and four dimensions, with no restrictions to further expanding the dimensionality. We demonstrate that the generation of classical electro-optic frequency comb can be modeled as a process described by random walks in a tight-binding model, and we have verified this by measuring the coherent distribution of optical steady states. We believe that our platform is a promising candidate for exploration of topological and quantum photonics in the frequency domain.

     
    more » « less
  2. Quasi-phase-matched interactions in waveguides with quadratic nonlinearities enable highly efficient nonlinear frequency conversion. In this paper, we demonstrate the first generation of devices that combine the dispersion engineering available in nanophotonic waveguides with quasi-phase-matched nonlinear interactions available in periodically poled lithium niobate (PPLN). This combination enables quasi-static interactions of femtosecond pulses, reducing the pulse energy requirements by several orders of magnitude compared to conventional devices, from picojoules to femtojoules. We experimentally demonstrate two effects associated with second harmonic generation (SHG). First, we observe efficient quasi-phase-matched SHG with<<#comment/>100fJof pulse energy. Second, in the limit of strong phase-mismatch, we observe spectral broadening of both harmonics with as little as 2 pJ of pulse energy. These results lay a foundation for a new class of nonlinear devices, in which coengineering of dispersion with quasi-phase-matching enables efficient nonlinear optics at the femtojoule level.

     
    more » « less