skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1616026

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT The probability distribution of density in isothermal, supersonic, turbulent gas is approximately lognormal. This behaviour can be traced back to the shock waves travelling through the medium, which randomly adjust the density by a random factor of the local sonic Mach number squared. Provided a certain parcel of gas experiences a large number of shocks, due to the central limit theorem, the resulting distribution for density is lognormal. We explore a model in which parcels of gas undergo finite number of shocks before relaxing to the ambient density, causing the distribution for density to deviate from a lognormal. We confront this model with numerical simulations with various rms Mach numbers ranging from subsonic as low as 0.1 to supersonic at 25. We find that the fits to the finite formula are an order of magnitude better than a lognormal. The model naturally extends even to subsonic flows, where no shocks exist. 
    more » « less
  2. ABSTRACT To understand the formation of stars from clouds of molecular gas, one essentially needs to know two things: what gas collapses, and how long it takes to do so. We address these questions by embedding pseudo-Lagrangian tracer particles in three simulations of self-gravitating turbulence. We identify prestellar cores at the end of the collapse, and use the tracer particles to rewind the simulations to identify the preimage gas for each core at the beginning of each simulation. This is the first of a series of papers, wherein we present the technique and examine the first question: What gas collapses? For the preimage gas at t = 0, we examine a number of quantities – the probability distribution function (PDF) for several quantities, the structure function for velocity, several length scales, the volume filling fraction, the overlap between different preimages, and fractal dimension of the preimage gas. Analytical descriptions are found for the PDFs of density and velocity for the preimage gas. We find that the preimage of a core is large and sparse, and we show that gas for one core comes from many turbulent density fluctuations and a few velocity fluctuations. We find that binary systems have preimages that overlap in a fractal manner. Finally, we use the density distribution to derive a novel prediction of the star formation rate. 
    more » « less