skip to main content


Search for: All records

Award ID contains: 1616459

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The influence of the ribosome on nascent chains is poorly understood, especially in the case of proteins devoid of signal or arrest sequences. Here, we provide explicit evidence for the interaction of specific ribosomal proteins with ribosome-bound nascent chains (RNCs). We target RNCs pertaining to the intrinsically disordered protein PIR and a number of mutants bearing a variable net charge. All the constructs analyzed in this work lack N-terminal signal sequences. By a combination chemical crosslinking and Western-blotting, we find that all RNCs interact with ribosomal protein L23 and that longer nascent chains also weakly interact with L29. The interacting proteins are spatially clustered on a specific region of the large ribosomal subunit, close to the exit tunnel. Based on chain-length-dependence and mutational studies, we find that the interactions with L23 persist despite drastic variations in RNC sequence. Importantly, we also find that the interactions are highly Mg+2-concentration-dependent. This work is significant because it unravels a novel role of the ribosome, which is shown to engage with the nascent protein chain even in the absence of signal or arrest sequences.

     
    more » « less
  2. Abstract The founding principles of protein folding introduced by Christian Anfinsen, together with the numerous mechanistic investigations that followed, assume that protein folding is a thermodynamically controlled process. On the other hand, this review underscores the fact that thermodynamic control is far from being the norm in protein folding, as long as one considers an extended chemical-potential landscape encompassing aggregates, in addition to native, unfolded and intermediate states. Here, we highlight the key role of kinetic trapping of the protein native state relative to unfolded, intermediate and, most importantly, aggregated states. We propose that kinetic trapping serves an important role in biology by protecting the bioactive states of a large number of proteins from deleterious aggregation. In the event that undesired aggregates were somehow formed, specialized intracellular disaggregation machines have evolved to convert any aberrant populations back to the native state, thus restoring a fully bioactive and aggregation-protected protein cohort. 
    more » « less