skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1620604

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Using a 3‐D mantle wedge flow field for a generic oblique subduction system, we calculate elastic tensors of mineral aggregates in the mantle wedge for A‐, B‐, C‐, and E‐type olivine crystal preferred orientations (CPO) and apply the calculated elastic tensor in the forward calculation of shear‐wave splitting (SWS) through the mantle wedge. We find that the hexagonal approximation of the full tensor does not affect the SWS parameters (the fast direction and the delay time) significantly for all CPO types except that the delay time for C‐type CPO becomes shorter. Additionally, we find that despite the 3‐D mantle flow field that results from oblique subduction, the fast direction is margin‐normal for A‐, C‐ and E‐type CPOs and margin‐parallel for B‐type CPO. 
    more » « less
  2. This package of codes uses a 3-D velocity flow field to calculate crystal preferred orientation (CPO) using a modified version of D-Rex (Kaminiski et al., 2004), and then calculates local shear wave splitting (SWS) parameters using MSAT (Walker & Wookey, 2012). It includes the codes needed for the plotting D-Rex output (GMT5, Wessel et al., 2013), the scripts and general workflow to process the elastic tensors from D-Rex before using them in the SWS code, and multiple README files containing more details on each code. The mantle wedge flow from a 45 degree obliquity subduction zone is provided as an example. 
    more » « less