skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1623018

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While much research focused on making emphasizes digital and tangible media, few studies have explored making with biology, or biomaking, where people use cells as fabrication units to grow or “make” desired materials for designing real world applications. This lack is especially glaring considering how biomaking and related industries are often aligned with a growing push toward sustainable production as a way of addressing the pressing environmental issues of the day. In order address how maker frameworks could be used as a productive way of bringing biomaking into K-12 contexts, we report on the design and implementation of a biomaking workshop where teams of high school students both assembled a physical biosensor and imagined applications for this technology to address real world issues. Using classroom observations, analysis of classroom projects, and focus group interviews, we examined student experiences and perceptions of these activities in order to ask: What the affordances and challenges of biomaking in supporting maker learning, especially with regard to the less common practices of assembly and imagining? In the discussion, we review what we learned about facilitating biomaking in K-12 setting, as well how our analysis led us to a revaluation of the often crucial but neglected role assembly plays in more ‘typical’ maker activities, and the possibilities for enriching maker activities by including design prototyping and imagination. 
    more » « less
  2. Most research on K-12 educational making has focused on tinkering with tangible and digital materials and processes within STEM disciplines like computing and engineering. Despite the growing fields of bioengineering and synthetic biology, far fewer studies have explored educational making possibilities in these realms. In this study we explore students’ engagement with biomaking, where people can make new materials and artifacts by genetically manipulating microorganisms. We examined 34 high school students’ experiences and reflections on making biologos by growing color pigments and making biosensors by creating fluorescent reactions. Through observations of workshop interactions and focus group interviews, we found that biomaking primarily engages students with assembly, or step-by-step, processes rather than experimentation or tinkering with materials. In the discussion we address the potentials and affordances of assembly practices in promoting rich learning experiences not just in biomaking, but also in other K-12 maker contexts. 
    more » « less
  3. In synthetic biology scientists genetically modify—or biohack—cells in order to repurpose their function or products. While synthetic biology is gaining societal relevance, few opportunities exist for K-12 students to have actual biodesign or biohacking experiences. To examine how high school students can use synthetic biology to engage not only in key science inquiry but also maker practices, we developed and implemented a workshop in which high school students genetically modified and repurposed yeast to produce and deliver vitamin A. Analyzing workshop observations and interviews of focus groups, we addressed the following research questions: (1) How did biodesign activities reflect science practices as characterized in national science standards? and (2) What did students have to say about their experiences with bio-design activities? In the discussion, we address what we learned about facilitating and improving biodesign in K-12 in classrooms. 
    more » « less