skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1625824

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    This paper extends prior work establishing an operationalized framework of mathematical sense making (MSM) in physics. The framework differentiates between the object being understood (either physical or mathematical) and various tools (physical or mathematical) used to mediate the sense-making process. This results in four modes of MSM that can be coordinated and linked in various ways. Here, the framework is applied to novel modalities of student written work (both short answer and multiple choice). In detailed studies of student reasoning about the photoelectric effect, we associate these MSM modes with particular multiple choice answers, and substantiate this association by linking both the MSM modes and multiple choice answers with finer-grained reasoning elements that students use in solving a specific problem. Through the multiple associations between MSM mode, distributions of reasoning elements, and multiple- choice answers, we confirm the applicability of this framework to analyzing these sparser modalities of student work and its utility for analyzing larger-scale (N > 100) datasets. The association between individual reasoning elements and both MSM modes and MC answers suggest that it is possible to cue particular modes of student reasoning and answer selection. Such findings suggest potential for this framework to be applicable to the analysis and design of curriculum. 
    more » « less
  2. null (Ed.)
    We present a framework designed to help categorize various sense making moves, allowing for greater specificity in describing and understanding student reasoning and also in the development of curriculum to support this reasoning. The framework disaggregates between the mechanisms of student reasoning (the cognitive tool that they are employing) and what they are reasoning about (the object). Noting that either the tool or object could be mathematical or physical, the framework includes four basic sense making modes: Use of a mathematical tool to understand a mathematical object, use of a mathematical tool to understand a physical object, use of a physical tool to understand a mathematical object, and use of a physical tool to understand a physical object. We identify three fundamental processes by which these modes may be combined (translation, chaining, and coordination) and present a visual representation that captures both the individual reasoning modes and the processes by which they are combined. The utility of the framework as a tool for describing student reasoning is demonstrated through the analysis of two extended reasoning episodes. Finally, implications of this framework for curricular design are discussed. 
    more » « less