skip to main content


Search for: All records

Award ID contains: 1629230

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Epitaxial (Ti1−xMgx)0.25Al0.75N(0001)/Al2O3(0001) layers are used as a model system to explore how Fermi‐level engineering facilitates structural stabilization of a host matrix despite the intentional introduction of local bonding instabilities that enhance the piezoelectric response. The destabilizing octahedral bonding preference of Ti dopants and the preferred 0.67 nitrogen‐to‐Mg ratio for Mg dopants deteriorate the wurtzite AlN matrix for both Ti‐rich (x< 0.2) and Mg‐rich (x≥ 0.9) alloys. Conversely,x= 0.5 leads to a stability peak with a minimum in the lattice constant ratioc/a, which is caused by a Fermi‐level shift into the bandgap and a trend toward nondirectional ionic bonding, leading to a maximum in the expected piezoelectric stress constante33. The refractive index and the subgap absorption decrease withx, the optical bandgap increases, and the elastic constant along the hexagonal axisC33= 270 ± 14 GPa remains composition independent, leading to an expected piezoelectric constantd33= 6.4 pC N−1atx= 0.5, which is 50% larger than for the pure AlN matrix. Thus, contrary to the typical anticorrelation between stability and electromechanical coupling, the (Ti1−xMgx)0.25Al0.75N system exhibits simultaneous maxima in the structural stability and the piezoelectric response atx= 0.5.

     
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
    Rocksalt structure nitrides emerge as a promising class of semiconductors for high-temperature thermoelectric and plasmonic applications. Controlling the bandgap and strain is essential for the development of a wide variety of electronic devices. Here we use (Ti 0.5 Mg 0.5 ) 1−x Al x N as a model system to explore and demonstrate the tunability of both the bandgap and the strain state in rocksalt structure nitrides, employing a combined experimental and computational approach. (Ti 0.5 Mg 0.5 ) 1−x Al x N layers with x ≤ 0.44 deposited on MgO(001) substrates by reactive co-sputtering at 700 °C are epitaxial single crystals with a solid-solution B1 rocksalt structure. The lattice mismatch with the substrate decreases with increasing x , leading to a transition in the strain-state from partially relaxed (74% and 38% for x = 0 and 0.09) to fully strained for x ≥ 0.22. First-principles calculations employing 64-atom Special Quasirandom Structures (SQS) indicate that the lattice constant decreases linearly with x according to a = (4.308 − 0.234 x ) Å for 0 ≤ x ≤ 1. In contrast, the measured relaxed lattice parameter a o = (4.269 − 0.131 x ) Å is linear only for x ≤ 0.33, its composition dependence is less pronounced, and x > 0.44 leads to the nucleation of secondary phases. The fundamental (indirect) bandgap predicted using the same SQS supercells and the HSE06 functional increases from 1.0 to 2.6 eV for x = 0–0.75. In contrast, the onset of the measured optical absorption due to interband transitions increases only from 2.3 to 2.6 eV for x = 0–0.44, suggesting that the addition of Al in the solid solution relaxes the electron momentum conservation and causes a shift from direct to indirect gap transitions. The resistivity increases from 9.0 to 708 μΩ m at 77 K and from 6.8 to 89 μΩ m at 295 K with increasing x = 0–0.44, indicating an increasing carrier localization associated with a randomization of cation site occupation and the increasing bandgap which also causes a 33% reduction in the optical carrier concentration. The overall results demonstrate bandgap and strain engineering in rocksalt nitride semiconductors and show that, in contrast to conventional covalent semiconductors, the random cation site occupation strongly affects optical transitions. 
    more » « less
  5. null (Ed.)