skip to main content


Search for: All records

Award ID contains: 1631428

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sosnovsky, S. ; Brusilovsky, P ; Baraniuk, R. G. ; Lan, A. S. (Ed.)
    As students read textbooks, they often highlight the material they deem to be most important. We analyze students’ highlights to predict their subsequent performance on quiz questions. Past research in this area has encoded highlights in terms of where the highlights appear in the stream of text—a positional representation. In this work, we construct a semantic representation based on a state-of-the-art deep-learning sentence embedding technique (SBERT) that captures the content-based similarity between quiz questions and highlighted (as well as non-highlighted) sentences in the text. We construct regression models that include latent variables for student skill level and question difficulty and augment the models with highlighting features. We find that highlighting features reliably boost model performance. We conduct experiments that validate models on held-out questions, students, and student-questions and find strong generalization for the latter two but not for held-out questions. Surprisingly, highlighting features improve models for questions at all levels of the Bloom taxonomy, from straightforward recall questions to inferential synthesis/evaluation/creation questions. 
    more » « less
  2. null (Ed.)
    Abstract Our goal is to understand and optimize human concept learning by predicting the ease of learning of a particular exemplar or category. We propose a method for estimating ease values, quantitative measures of ease of learning, as an alternative to conducting costly empirical training studies. Our method combines a psychological embedding of domain exemplars with a pragmatic categorization model. The two components are integrated using a radial basis function network (RBFN) that predicts ease values. The free parameters of the RBFN are fit using human similarity judgments, circumventing the need to collect human training data to fit more complex models of human categorization. We conduct two category-training experiments to validate predictions of the RBFN. We demonstrate that an instance-based RBFN outperforms both a prototype-based RBFN and an empirical approach using the raw data. Although the human data were collected across diverse experimental conditions, the predicted ease values strongly correlate with human learning performance. Training can be sequenced by (predicted) ease, achieving what is known as fading in the psychology literature and curriculum learning in the machine-learning literature, both of which have been shown to facilitate learning. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    Deep-learning vision models have shown intriguing similarities and differences with respect to human vision. We investigate how to bring machine visual represen- tations into better alignment with human representations. Human representations are often inferred from behavioral evidence such as the selection of an image most similar to a query image. We find that with appropriate linear transformations of deep embeddings, we can improve prediction of human binary choice on a data set of bird images from 72% at baseline to 89%. We hypothesized that deep embeddings have redundant, high (4096) dimensional representations; however, reducing the rank of these representations results in a loss of explanatory power. We hypothesized that the dilation transformation of representations explored in past research is too restrictive, and indeed we found that model explanatory power can be significantly improved with a more expressive linear transform. Most surprising and exciting, we found that, consistent with classic psychological literature, human similarity judgments are asymmetric: the similarity of X to Y is not necessarily equal to the similarity of Y to X, and allowing models to express this asymmetry improves explanatory power. 
    more » « less
  5. We explore the behavior of a standard convolutional neural net in a continual-learning setting that introduces visual classification tasks sequentially and requires the net to master new tasks while preserving mastery of previously learned tasks. This setting corresponds to that which human learners face as they acquire domain expertise serially, for example, as an individual studies a textbook. Through simulations involving sequences of ten related visual tasks, we find reason for optimism that nets will scale well as they advance from having a single skill to becoming multi-skill domain experts. We observe two key phenomena. First, forward facilitation—the accelerated learning of task n+1 having learned n previous tasks—grows with n. Second, backward interference— the forgetting of the n previous tasks when learning task n + 1—diminishes with n. Amplifying forward facilitation is the goal of research on metalearning, and attenuating backward interference is the goal of research on catastrophic forgetting. We find that both of these goals are attained simply through broader exposure to a domain. 
    more » « less
  6. We investigate whether student comprehension and knowledge retention can be predicted from textbook annotations, specifically the material that students choose to highlight. Using a digital open-access textbook platform, Openstax, students enrolled in Biology, Physics, and Sociology courses read sections of their introductory text as part of required coursework, optionally highlighted the text to flag key material, and then took brief quizzes as the end of each section. We find that when students choose to highlight, the specific pattern of highlights can explain about 13% of the variance in observed quiz scores. We explore many different representations of the pattern of highlights and discover that a low-dimensional logistic principal component based vector is most effective as input to a ridge regression model. Considering the many sources of uncontrolled variability affecting student performance, we are encouraged by the strong signal that highlights provide as to a student’s knowledge state. 
    more » « less
  7. Can we predict the words a child is going to learn next given information about the words that a child knows now? Do different representations of a child’s vocabulary knowledge affect our ability to predict the acquisition of lexical items for individual children? Past research has often focused on population statistics of vocabulary growth rather than prediction of words an individual child is likely to learn next. We consider a neural network approach to predict vocabulary acquisition. Specifically, we investigate how best to represent the child’s current vocabulary in order to accurately predict future learning. The models we consider are based on qualitatively different sources of information: descriptive information about the child, the specific words a child knows, and representations that aim to capture the child’s aggregate lexical knowledge. Using longitudinal vocabulary data from children aged 15-36 months, we construct neural network models to predict which words are likely to be learned by a particular child in the coming month. Many models based on child-specific vocabulary information outperform models with child information only, suggesting that the words a child knows influence prediction of future language learning. These models provide an understanding of the role of current vocabulary knowledge on future lexical growth. 
    more » « less
  8. Technological developments have spawned a range of educational software that strives to enhance learning through personalized adaptation. The success of these systems depends on how accurate the knowledge state of individual learners is modeled over time. Computer scientists have been at the forefront of development for these kinds of distributed learning systems and have primarily relied on data-driven algorithms to trace knowledge acquisition in noisy and complex learning domains. Meanwhile, research psychologists have primarily relied on data collected in controlled laboratory settings to develop and validate theory-driven computational models, but have not devoted much exploration to learning in naturalistic environments. The two fields have largely operated in parallel despite considerable overlap in goals. We argue that mutual benefits would result from identifying and implementing more accurate methods to model the temporal dynamics of learning and forgetting for individual learners. Here we discuss recent efforts in developing adaptive learning technologies to highlight the strengths and weaknesses inherent in the typical approaches of both fields. We argue that a closer collaboration between the educational machine learning/data mining and cognitive psychology communities would be a productive and exciting direction for adaptive learning system application to move in. 
    more » « less