skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1631439

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The cancer stem cell hypothesis has been used to explain many cancer complications resulting in poor patient outcomes including induced drug resistance, metastases to distant organs, and tumor recurrence. While the validity of the cancer stem cell model continues to be the cause of much scientific debate, a number of putative cancer stem cell markers have been identified making studies concerning the targeting of cancer stem cells possible. In this review, a number of identifying properties of cancer stem cells have been outlined including properties contributing to the drug resistance and metastatic potential commonly observed in supposed cancer stem cells. Due to cancer stem cells' numerous survival mechanisms, the diversity of cancer stem cell markers between cancer types and tissues, and the prevalence of cancer stem cell markers among healthy stem and somatic cells, it is likely that currently utilized treatments will continue to fail to eradicate cancer stem cells. The successful treatment of cancer stem cells will rely upon the development of anti-neoplastic drugs capable of influencing many cellular mechanisms simultaneously in order to prevent the survival of this evasive subpopulation. Natural compounds represent a historically rich source of novel, biologically active compounds which are able to interact with a large number of cellular targets while limiting the painful side-effects commonly associated with cancer treatment. A brief review of select natural products that have been demonstrated to diminish the clinically devastating properties of cancer stem cells or to induce cancer stem cell death is also presented. 
    more » « less
  2. Tissue engineering offers a promising strategy to restore injuries resulting from trauma, infection, tumor resection, or other diseases. In spite of significant progress, the field faces a significant bottleneck; the critical need to understand and exploit the interdependencies of tissue healing, angiogenesis, and inflammation. Inherently, the balance of these interacting processes is affected by a number of injury site conditions that represent a departure from physiological environment, including reduced pH, increased concentration of free radicals, hypoglycemia, and hypoxia. Efforts to harness the potential of immune response as a therapeutic strategy to promote tissue repair have led to identification of natural compounds with significant anti-inflammatory properties. This article provides a concise review of the body's inflammatory response to biomaterials and describes the role of oxygen as a physiological cue in this process. We proceed to highlight the potential of natural compounds to mediate inflammatory response and improve host-graft integration. Herein, we discuss the use of natural compounds to map signaling molecules and checkpoints that regulate the cross-linkage of immune response and skeletal repair. 
    more » « less