skip to main content


Search for: All records

Award ID contains: 1631977

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Climate conditions and instantaneous depositional events can influence the relative contribution of sediments from terrestrial and marine environments and ultimately the quantity and composition of carbon buried in the sediment record. Here, we analyze the elemental, isotopic, and organic geochemical composition of marine sediments to identify terrestrial and marine sources in sediment horizons associated with droughts, turbidites, and floods in the Santa Barbara Basin (SBB), California, during the last 2,000 years. Stable isotopes (δ13C and δ15N) indicate that more terrestrial organic carbon (OC) was deposited during floods relative to background sediment, while bulk C to nitrogen (C/N) ratios remained relatively constant (~10). Long‐chainn‐alkanes (C27, C29, C31, and C33), characteristic of terrestrial OC, dominated all types of sediment deposition but were 4 times more abundant in flood layers. Marine algae (C15, C17, and C19) and macrophytes (C21and C23) were also 2 times higher in flood versus background sediments. Turbidites contained twice the terrestrialn‐alkanes relative to background sediment. Conversely, drought intervals were only distinguishable from background sediment by their higher proportion of marine algaln‐alkanes. Combined, our data indicate that 15% of the total OC buried in SBB over the past 2,000 years was deposited during 11 flood events where the sediment was mostly terrestrially derived, and another 12% of deep sediment OC burial was derived from shelf remobilization during six turbidite events. Relative to twentieth century river runoff, our data suggest that floods result in considerable terrestrial OC burial on the continental margins of California.

     
    more » « less
  2. Abstract

    Sedimentary δ15N (δ15Nsed) has been widely applied as a proxy for water column denitrification. When combined with additional productivity proxies, it provides insights into the driving forces behind long‐term changes in water column oxygenation. High‐resolution (~2 years) δ15Nsedand productivity proxy records (total organic carbon [TOC], Si/Ti, and Ca/Ti) from Santa Barbara Basin, California, were generated from a well‐dated Kasten core (SPR0901‐03KC). These records reveal the relationship between Southern California upwelling and oxygenation over the past 2,000 years. Inconsistencies between Si/Ti (coastal upwelling proxy) and TOC (total export productivity proxy) suggest wind curl upwelling influenced Southern California primary productivity, especially during intervals of weak coastal upwelling. Coherence between δ15Nsed, TOC, and drought indicators supports a local control of δ15Nsedby atmospheric circulation, as persistent northerly winds associated with an intensified North Pacific High pressure cell lead to enhanced coastal upwelling. In the northeast Pacific, δ15Nsedis used as a water mass tracer of denitrification signals transported north from the eastern tropical North Pacific (ETNP) via the California Undercurrent. A 1,200‐year δ15Nsedrecord from the Pescadero slope, Gulf of California, lies between denitrifying subsurface waters in the ETNP and Southern California. During the Medieval Climate Anomaly, coherence between Pescadero and Santa Barbara Basin δ15Nsedindicates connections between ETNP and Southern California on centennial timescales. Yet an out‐of‐phase relationship occurred when the Aleutian Low was anomalously strong during the Little Ice Age. We suggest intensified nutrient‐rich subarctic water advection might have transported high‐15N nitrate into Southern California when the California Undercurrent and ETNP denitrification weakened.

     
    more » « less
  3. Abstract

    The ratio of boron to calcium (B/Ca) in a subset of foraminifera has been shown to covary with seawater carbonate chemistry, making this geochemical signature a promising proxy for carbon cycle science. Some studies suggest complications with the B/Ca proxy in photosymbiont‐bearing planktonic foraminifera, while relatively few studies have investigated B/Ca in species that lack large dinoflagellate symbionts. For the first time, we use a sediment trap time series to evaluate B/Ca of subtropical and subpolar planktonic foraminifera species that are asymbiotic (Globigerina bulloidesandNeogloboquadrina incompta) and a species that hosts small intrashell photosymbionts (Neogloboquadrina dutertrei). We find that B/Ca measurements across size fractions indicate overall little to no size‐dependent uptake of boron that has previously been reported in some symbiont‐bearing foraminifera.Neogloboquadrina incomptaandN.dutertreiB/Ca are strongly correlated with calcite saturation, pH, and carbonate ion concentration, which is in good agreement with the limited number of published core top results. WhileG.bulloidesB/Ca trends with seasonal fluctuations in carbonate chemistry, during discrete periods considerable B/Ca offsets occur when a crypticG.bulloidesspecies is known to be seasonally present within the region. We confirm presence and significant B/Ca offset between cryptic species by individual LA‐ICP‐MS analyses. This finding calls into question the use of traditional morphological classification to lump what might be genetically distinct species for geochemical analyses. Our overall results highlight the utility ofG.bulloides,N.incompta, andN.dutertreiB/Ca while bringing to light new considerations regarding divergent geochemistry of cryptic species.

     
    more » « less
  4. Abstract

    Decades of observations show that the world's oceans have been losing oxygen, with far‐reaching consequences for ecosystems and biogeochemical cycling. To reconstruct oxygenation beyond the limited scope of instrumental records, proxy records are needed, such as sedimentary δ15N. We combine two δ15N records from the Santa Barbara Basin (SBB), a 24‐year‐long, biweekly sediment trap time series, and a 114‐year, high‐resolution sediment core together spanning the years 1892–2017. These records allow for the examination of δ15N variability on seasonal to centennial timescales. Seasonal variability in SBB δ15N is consistent in timing with the poleward advection of a high δ15N signal from the Eastern Tropical North Pacific in the summer and fall. Strong El Niño events result in variable δ15N signatures, reflective of local rainfall, and neither the Pacific Decadal Oscillation nor North Pacific Gyre Oscillation impose strong controls on bulk sedimentary δ15N. Seasonal and interannual variability in sediment trap δ13Corgis consistent with local productivity as a driver; however, this signal is not retained in the sediment core. The time series from the sediment trap and core show that bulk sedimentary δ15N in SBB has now exceeded that measured for the past 2,000 years. We hypothesize that the change in δ15N reflects the increasing influence of denitrified waters from the Eastern Tropical North Pacific and ongoing deoxygenation of the Eastern Pacific. When juxtaposed with other regional δ15N records our results further suggest that SBB is uniquely situated to record long‐term change in the Eastern Tropical North Pacific.

     
    more » « less
  5. Marine protists are integral to the structure and function of pelagic ecosystems and marine carbon cycling, with rhizarian biomass alone accounting for more than half of all mesozooplankton in the oligotrophic oceans. Yet, understanding how their environment shapes diversity within species and across taxa is limited by a paucity of observations of heritability and life history. Here, we present observations of asexual reproduction, morphologic plasticity, and ontogeny in the planktic foraminifer Neogloboquadrina pachyderma in laboratory culture. Our results demonstrate that planktic foraminifera reproduce both sexually and asexually and demonstrate extensive phenotypic plasticity in response to nonheritable factors. These two processes fundamentally explain the rapid spatial and temporal response of even imperceptibly low populations of planktic foraminifera to optimal conditions and the diversity and ubiquity of these species across the range of environmental conditions that occur in the ocean. 
    more » « less
  6. ABSTRACT The trace element composition of planktic foraminifera shells is influenced by both environmental and biological factors (‘vital effects’). As trace elements in individual foraminifera shells are increasingly used as paleoceanographic tools, understanding how trace element ratios vary between individuals, among species, and in response to high frequency environmental variability is of critical importance. Here, we present a three-year plankton tow record (2010–2012) of individual shell trace element (Mg, Sr, Ba, and Mn) to Ca ratios in the planktic species Globigerina ruber (pink), Orbulina universa, and Globorotalia menardii collected throughout the upper 100 m of Cariaco Basin. Plankton tows were paired with in situ measurements of water column chemistry and hydrography. The Mg/Ca ratio reflects different calcification temperatures in all three species when calculated using species-specific temperature relationships from single-species averages of Mg/Ca. However, individual shell Mg/Ca often results in unrealistic temperate estimates. The Sr/Ca ratios are relatively constant among the four species. Ratios of Mn/Ca and Ba/Ca are highest in G. menardii and are not reflective of elemental concentrations in open waters. The Mn/Ca ratio is elevated in all species during upwelling conditions, and a similar trend is demonstrated in Neogloboquadrina incompta shells from the California margin collected during upwelling periods. Together this suggests that elevated shell Mn/Ca may act as a tracer for upwelling of deeper water masses. Our results emphasize the large degree of trace element variability present among and within species living within a limited depth habitat and the roles of biology, calcification environment, and physical mixing in mediating how trace element geochemistry reflects environmental variability in the surface ocean. 
    more » « less