skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Search for: All records

Award ID contains: 1632730

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    A factor-augmented vector autoregressive (FAVAR) model is defined by a VAR equation that captures lead-lag correlations amongst a set of observed variables X and latent factors F, and a calibration equation that relates another set of observed variables Y with F and X. The latter equation is used to estimate the factors that are subsequently used in estimating the parameters of the VAR system. The FAVAR model has become popular in applied economic research, since it can summarize a large number of variables of interest as a few factors through the calibration equation and subsequently examine their influence on core variables of primary interest through the VAR equation. However, there is increasing need for examining lead-lag relationships between a large number of time series, while incorporating information from another high-dimensional set of variables. Hence, in this paper we investigate the FAVAR model under high-dimensional scaling. We introduce an appropriate identification constraint for the model parameters, which when incorporated into the formulated optimization problem yields estimates with good statistical properties. Further, we address a number of technical challenges introduced by the fact that estimates of the VAR system model parameters are based on estimated rather than directly observed quantities. The performance of the proposed estimators is evaluated on synthetic data. Further, the model is applied to commodity prices and reveals interesting and interpretable relationships between the prices and the factors extracted from a set of global macroeconomic indicators. 
    more » « less
  2. null (Ed.)
    High dimensional piecewise stationary graphical models represent a versatile class for modelling time varying networks arising in diverse application areas, including biology, economics, and social sciences. There has been recent work in offline detection and estimation of regime changes in the topology of sparse graphical models. However, the online setting remains largely unexplored, despite its high relevance to applications in sensor networks and other engineering monitoring systems, as well as financial markets. To that end, this work introduces a novel scalable online algorithm for detecting an unknown number of abrupt changes in the inverse covariance matrix of sparse Gaussian graphical models with small delay. The proposed algorithm is based upon monitoring the conditional log-likelihood of all nodes in the network and can be extended to a large class of continuous and discrete graphical models. We also investigate asymptotic properties of our procedure under certain mild regularity conditions on the graph size, sparsity level, number of samples, and preand post-changes in the topology of the network. Numerical works on both synthetic and real data illustrate the good performance of the proposed methodology both in terms of computational and statistical efficiency across numerous experimental settings. 
    more » « less
  3. Estimation of Markov Random Field and covariance models from high-dimensional data represents a canonical problem that has received a lot of attention in the literature. A key assumption, widely employed, is that of sparsity of the underlying model. In this paper, we study the problem of estimating such models exhibiting a more intricate structure comprising simultaneously of sparse, structured sparse and dense components. Such structures naturally arise in several scientific fields, including molecular biology, finance and political science. We introduce a general framework based on a novel structured norm that enables us to estimate such complex structures from high-dimensional data. The resulting optimization problem is convex and we introduce a linearized multi-block alternating direction method of multipliers (ADMM) algorithm to solve it efficiently. We illustrate the superior performance of the proposed framework on a number of synthetic data sets generated from both random and structured networks. Further, we apply the method to a number of real data sets and discuss the results. 
    more » « less