skip to main content


Search for: All records

Award ID contains: 1633753

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Generative Moment-Matching Network (GMMN) is a deep generative model, which employs maximum mean discrepancy as the objective to learn model parameters. However, this model can only generate samples, failing to infer the latent code from samples for downstream tasks. In this paper, we propose a novel Joint Generative Moment-Matching Network (JGMMN), which learns the structural latent code for unsupervised inference. Specifically, JGMMN has a generation network for the generation task and an inference network for the inference task. We first reformulate this model as the two joint distributions matching problem. To solve this problem, we propose to use the Joint Maximum Mean Discrepancy (JMMD) as the objective to learn these two networks simultaneously. Furthermore, to enforce the consistency between the sample distribution and the inferred latent code distribution, we propose a novel multi-modal regularization to enforce this consistency. At last, extensive experiments on both synthetic and real-world datasets have verified the effectiveness and correctness of our proposed JGMMN.

     
    more » « less
  2. Network embedding has attracted a surge of attention in recent years. It is to learn the low-dimensional representation for nodes in a network, which benefits downstream tasks such as node classification and link prediction. Most of the existing approaches learn node representations only based on the topological structure, yet nodes are often associated with rich attributes in many real-world applications. Thus, it is important and necessary to learn node representations based on both the topological structure and node attributes. In this paper, we propose a novel deep attributed network embedding approach, which can capture the high non-linearity and preserve various proximities in both topological structure and node attributes. At the same time, a novel strategy is proposed to guarantee the learned node representation can encode the consistent and complementary information from the topological structure and node attributes. Extensive experiments on benchmark datasets have verified the effectiveness of our proposed approach.

     
    more » « less
  3. It is common in machine learning applications that unlabeled data are abundant while acquiring labels is extremely difficult. In order to reduce the cost of training model while maintaining the model quality, active learning provides a feasible solution. Instead of acquiring labels for random samples, active learning methods carefully select the data to be labeled so as to alleviate the impact from the redundancy or noise in the selected data and improve the trained model performance. In early stage experimental design, previous active learning methods adopted data reconstruction framework, such that the selected data maintained high representative power. However, these models did not consider the data class structure, thus the selected samples could be predominated by the samples from major classes. Such mechanism fails to include samples from the minor classes thus tends to be less representative. To solve this challenging problem, we propose a novel active learning model for the early stage of experimental design. We use exclusive sparsity norm to enforce the selected samples to be (roughly) evenly distributed among different groups. We provide a new efficient optimization algorithm and theoretically prove the optimal convergence rate O(1/{T^2}). With a simple substitution, we reduce the computational load of each iteration from O(n^3) to O(n^2), which makes our algorithm more scalable than previous frameworks.

     
    more » « less
  4. Identifying vehicles across cameras in traffic surveillance is fundamentally important for public safety purposes. However, despite some preliminary work, the rapid vehicle search in large-scale datasets has not been investigated. Moreover, modelling a view-invariant similarity between vehicle images from different views is still highly challenging. To address the problems, in this paper, we propose a Ranked Semantic Sampling (RSS) guided binary embedding method for fast cross-view vehicle Re-IDentification (Re-ID). The search can be conducted by efficiently computing similarities in the projected space. Unlike previous methods using random sampling, we design tree-structured attributes to guide the mini-batch sampling. The ranked pairs of hard samples in the mini-batch can improve the convergence of optimization. By minimizing a novel ranked semantic distance loss defined according to the structure, the learned Hamming distance is view-invariant, which enables cross-view Re-ID. The experimental results demonstrate that RSS outperforms the state-of-the-art approaches and the learned embedding from one dataset can be transferred to achieve the task of vehicle Re-ID on another dataset.

     
    more » « less
  5. Sparse learning models have shown promising performance in the high dimensional machine learning applications. The main challenge of sparse learning models is how to optimize it efficiently. Most existing methods solve this problem by relaxing it as a convex problem, incurring large estimation bias. Thus, the sparse learning model with nonconvex constraint has attracted much attention due to its better performance. But it is difficult to optimize due to the non-convexity.In this paper, we propose a linearly convergent stochastic second-order method to optimize this nonconvex problem for large-scale datasets. The proposed method incorporates second-order information to improve the convergence speed. Theoretical analysis shows that our proposed method enjoys linear convergence rate and guarantees to converge to the underlying true model parameter. Experimental results have verified the efficiency and correctness of our proposed method.

     
    more » « less