Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We propose DEER (Descriptive Knowledge Graph for Explaining Entity Relationships) - an open and informative form of modeling entity relationships. In DEER, relationships between entities are represented by free-text relation descriptions. For instance, the relationship between entities of machine learning and algorithm can be represented as “Machine learning explores the study and construction of algorithms that can learn from and make predictions on data.” To construct DEER, we propose a self-supervised learning method to extract relation descriptions with the analysis of dependency patterns and generate relation descriptions with a transformer-based relation description synthesizing model, where no human labeling is required. Experiments demonstrate that our system can extract and generate high-quality relation descriptions for explaining entity relationships. The results suggest that we can build an open and informative knowledge graph without human annotation.more » « less
-
We propose DEER (Descriptive Knowledge Graph for Explaining Entity Relationships) - an open and informative form of modeling entity relationships. In DEER, relationships between entities are represented by free-text relation descriptions. For instance, the relationship between entities of machine learning and algorithm can be represented as {``}Machine learning explores the study and construction of algorithms that can learn from and make predictions on data.{''} To construct DEER, we propose a self-supervised learning method to extract relation descriptions with the analysis of dependency patterns and generate relation descriptions with a transformer-based relation description synthesizing model, where no human labeling is required. Experiments demonstrate that our system can extract and generate high-quality relation descriptions for explaining entity relationships. The results suggest that we can build an open and informative knowledge graph without human annotation.more » « less
-
Path-based solutions have been shown to be useful for various graph analysis tasks, such as link prediction and graph clustering. However, they are no longer adequate for handling complex and gigantic graphs. Recently, motif-based analysis has attracted a lot of attention. A motif, or a small graph with a few nodes, is often considered as a fundamental unit of a graph. Motif-based analysis captures high-order structure between nodes, and performs better than traditional "edge-based" solutions. In this paper, we study motif-path , which is conceptually a concatenation of one or more motif instances. We examine how motif-paths can be used in three path-based mining tasks, namely link prediction, local graph clustering and node ranking. We further address the situation when two graph nodes are not connected through a motif-path, and develop a novel defragmentation method to enhance it. Experimental results on real graph datasets demonstrate the use of motif-paths and defragmentation techniques improves graph analysis effectiveness.more » « less