skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1634014

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Ionospheric modification experiments have been performed at the High‐Frequency Active Auroral Research Program (HAARP) facility in Gakona, Alaska, using a Very High Frequency (VHF) coherent scatter radar in Homer, Alaska, for experimental diagnostics. The experiments were intended to determine the threshold pump electric field required to initiate thermal parametric instability in theEregion. The pump power level was ramped systematically to determine the threshold, and the experiment was repeated at four closely spaced pump frequencies. This provided threshold estimates at fourEregion altitudes. The theory for thermal parametric instability based on the work of Dysthe et al. (1983,https://doi.org/10.1063/1.863993) has been modified for application in theEregion. The theory considers magneto‐ionic effects on the pump mode, linear mode conversion theory for upper hybrid wave generation, wave heating, and the effects of transport and dissipation based on fluid theory. The theory amounts to an eigenvalue problem where the eigenvalue is the threshold pump electric field for instability. The theory shows how the threshold depends on ionospheric transport coefficients and on the fractional cooling rate for inelastic electron‐neutral collisions. The theoretical predictions for threshold are roughly consistent with experimental values although the latter are probably affected by excess ionospheric absorption. 
    more » « less