skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1634389

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A series of laboratory experiments were conducted to investigate the characteristics of a dense gravity current flowing down an inclined slope into a quiescent two-layer stratification. The presence of the pycnocline causes the gravity current to split and intrude into the ambient at two distinct levels of neutral buoyancy, as opposed to the classical description of gravity currents in stratified media as being either a pure underflow or interflow. The splitting behaviour is observed to be dependent on the Richardson number ( $$Ri_{\unicode[STIX]{x1D70C}}$$ ) of the gravity current, formulated as the ratio of the excess density and the ambient stratification. For low $$Ri_{\unicode[STIX]{x1D70C}}$$ , underflow is more dominant, while at higher $$Ri_{\unicode[STIX]{x1D70C}}$$ interflow is more dominant. As $$Ri_{\unicode[STIX]{x1D70C}}$$ increases, however, we find that the splitting behaviour eventually becomes independent of $$Ri_{\unicode[STIX]{x1D70C}}$$ . Additionally, we have also identified two different types of waves that form on the pycnocline in response to the intrusion of the gravity current. An underflow-dominated regime causes a pycnocline displacement where the speed of the wave crest is locked to the gravity current, whereas an interflow-dominated regime launches an internal wave that moves much faster than the gravity current head or interfacial intrusion. 
    more » « less
  2. We investigate the interaction of a downslope gravity current with an internal wave propagating along a two-layer density jump. Direct numerical simulations confirm earlier experimental findings of a reduced gravity current mass flux, as well as the partial removal of the gravity current head from its body by large-amplitude waves (Hogg et al. , Environ. Fluid Mech. , vol. 18 (2), 2018, pp. 383–394). The current is observed to split into an intrusion of diluted fluid that propagates along the interface and a hyperpycnal current that continues to move downslope. The simulations provide detailed quantitative information on the energy budget components and the mixing dynamics of the current–wave interaction, which demonstrates the existence of two distinct parameter regimes. Small-amplitude waves affect the current in a largely transient fashion, so that the post-interaction properties of the current approach those in the absence of a wave. Large-amplitude waves, on the other hand, perform a sufficiently large amount of work on the gravity current fluid so as to modify its properties over the long term. The ‘decapitation’ of the current by large waves, along with the associated formation of an upslope current, enhance both viscous dissipation and irreversible mixing, thereby strongly reducing the available potential energy of the flow. 
    more » « less