- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Reddy, C.M. (2)
-
Valentine, D.L. (2)
-
Arrington, E.C. (1)
-
Gosselin, K.M. (1)
-
Kujawinski, E.B (1)
-
Love, C.R. (1)
-
Nelson, R.K. (1)
-
Rodgers, R.P. (1)
-
Thrash, J.C. (1)
-
Van Mooy, B.A.S. (1)
-
White, H.K. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
null (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)The 2010 Deepwater Horizon disaster remains the largest single accidental release of oil and gas into the ocean. During the 87- day release, scientists used oceanographic tools to collect wellhead oil and gas samples, interrogate microbial community shifts and activities, and track the chemical composition of dissolved oil in the ocean’s interior. In the decade since the disaster, field and laboratory investigations studied the physics and chemistry of irrupted oil and gas at high pressure and low temperature, the role of chemical dispersants in oil composition and microbial hydrocarbon degradation, and the impact of combined oil, gas and dispersants on the flora and fauna of coastal and deep- sea environments. The multi- faceted, multidisciplinary scientific response to the released oil, gas and dispersants culminated in a better understanding of the environmental factors that influence the short- term and long- term fate and transport of oil in marine settings. In this Review , we summarize the unique aspects of the Deepwater Horizon release and highlight the advances in oil chemistry and microbiology that resulted from novel applications of emerging technologies. We end with an outlook on the applicability of these findings to possible oil releases in future deep- sea drilling locations and newly- opened high- latitude shipping lanes.more » « less
-
Love, C.R.; Arrington, E.C.; Gosselin, K.M.; Reddy, C.M.; Van Mooy, B.A.S.; Nelson, R.K.; Valentine, D.L. (, Nature microbiology)null (Ed.)Seeps, spills and other oil pollution introduce hydrocarbons into the ocean. Marine cyanobacteria also produce hydrocarbons from fatty acids, but little is known about the size and turnover of this cyanobacterial hydrocarbon cycle. We report that cyanobacteria in an oligotrophic gyre mainly produce n-pentadecane and that microbial hydrocarbon production exhibits stratification and diel cycling in the sunlit surface ocean. Using chemical and isotopic tracing we find that pentadecane production mainly occurs in the lower euphotic zone. Using a multifaceted approach, we estimate that the global flux of cyanobacteria-produced pentadecane exceeds total oil input in the ocean by 100- to 500-fold. We show that rapid pentadecane consumption sustains a population of pentadecane-degrading bacteria, and possibly archaea. Our findings characterize a microbial hydrocarbon cycle in the open ocean that dwarfs oil input. We hypothesize that cyanobacterial hydrocarbon production selectively primes the ocean’s microbiome with long-chain alkanes whereas degradation of other petroleum hydrocarbons is controlled by factors including proximity to petroleum seepage.more » « less
An official website of the United States government

Full Text Available