skip to main content


Search for: All records

Award ID contains: 1634857

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. In this paper, nonlinearity associated with intense ultrasound is studied by using the one-dimensional motion of nonlinear shock wave in an ideal fluid. In nonlinear acoustics, the wave speed of different segments of a waveform is different, which causes distortion in the waveform and can result in the formation of a shock (discontinuity). Acoustic pressure of high-intensity waves causes particles in the ideal fluid to vibrate forward and backward, and this disturbance is of relatively large magnitude due to high-intensities, which leads to nonlinearity in the waveform. In this research, this vibration of fluid due to the intense ultrasonic wave is modeled as a fluid pushed by one complete cycle of piston. In a piston cycle, as it moves forward, it causes fluid particles to compress, which may lead to the formation of a shock (discontinuity). Then as the piston retracts, a forward-moving rarefaction, a smooth fan zone of continuously changing pressure, density, and velocity is generated. When the piston stops at the end of the cycle, another shock is sent forward into the medium. The variation in wave speed over the entire waveform is calculated by solving a Riemann problem. This study examined the interaction of shocks with a rarefaction. The flow field resulting from these interactions shows that the shock waves are attenuated to a Mach wave, and the pressure distribution within the flow field shows the initial wave is dissipated. The developed theory is applied to waves generated by 20 KHz, 500 KHz, and 2 MHz transducers with 50, 150, 500, and 1500 W power levels to explore the effect of frequency and power on the generation and decay of shock waves. This work enhances the understanding of the interactions of high-intensity ultrasonic waves with fluids. 
    more » « less
  3. The lower 12·875 km of the Passaic River is heavily contaminated due to industrial activities – specifically heavy metal extraction from chromium-ore-processing plants and production of pesticides and herbicides. Conventional methods for remediating contaminated sediments have limited application due to the tidal action and urban area of the contaminated section of the Passaic River. Hence, this study proposes an in situ technology using ultrasound and ozone nanobubbles to remediate the sediments. Ultrasound is capable of desorbing heavy metals from soil, and ozone can oxidise the released heavy metals to a form that is mobile for ease of extraction. Nanobubbles are used as an effective ozone delivery method for the oxidation of heavy metals. Bench-scale tests were performed to evaluate the feasibility of the proposed technology. Ozone nanobubbles increased the solubility of ozone in water and reduced wastage. Also, due to the high ozone concentrations in water, chromium oxidation increased. A synthetic soil with a grain size distribution similar to that of actual river sediments was artificially contaminated with chromium and used in this research. Test results showed a 97·54% chromium removal efficiency, suggesting the feasibility of the proposed technology for pilot-scale studies. 
    more » « less
    Free, publicly-accessible full text available July 1, 2082