Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The increasing utilization of massive open online courses has significantly expanded global access to formal education. Despite the technology’s promising future, student interaction on MOOCs is still a relatively under-explored and poorly understood topic. This work proposes a multi-level pattern discovery through hierarchical discriminative tensor factorization. We formulate the problem as a hierarchical discriminant subspace learning problem, where the goal is to discover the shared and discriminative patterns with a hierarchical structure. The discovered patterns enable a more effective exploration of the contrasting behaviors of two performance groups. We conduct extensive experiments on several real-world MOOC datasets to demonstrate the effectiveness of our proposed approach. Our study advances the current predictive modeling in MOOCs by providing more interpretable behavioral patterns and linking their relationships with the performance outcome.more » « less
-
The increasing and flexible use of autonomous systems in many domains -- from intelligent transportation systems, information systems, to business transaction management -- has led to challenges in understanding the normal and abnormal behaviors of those systems. As the systems may be composed of internal states and relationships among sub-systems, it requires not only warning users to anomalous situations but also provides transparency about how the anomalies deviate from normalcy for more appropriate intervention. We propose a unified anomaly discovery framework DeepSphere that simultaneously meet the above two requirements -- identifying the anomalous cases and further exploring the cases' anomalous structure localized in spatial and temporal context. DeepSphere leverages deep autoencoders and hypersphere learning methods, having the capability of isolating anomaly pollution and reconstructing normal behaviors. DeepSphere does not rely on human annotated samples and can generalize to unseen data. Extensive experiments on both synthetic and real datasets demonstrate the consistent and robust performance of the proposed method.more » « less
An official website of the United States government
