skip to main content

Search for: All records

Award ID contains: 1635103

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Orthotic treatments for knee osteoarthritis (OA) typically rely on simple mechanisms such as three-point bending straps and single-pin hinges. These commonly prescribed braces cannot treat bicompartmental knee OA, do not consider the muscle weakness that typically accompanies the condition, and employ hinges that restrict the knee's natural biomechanics. Utilizing a novel, personalized joint mechanism in conjunction with magnetorheological dampers, we have developed and evaluated a brace which attempts to address these shortcomings. This process has respected three principal design goals: reducing the load experienced across the entire knee joint, generating a supportive moment to aid the thigh muscles in shock absorption, and interfering minimally with gait kinematics. Two healthy volunteers were chosen to test the system's basic functionality through gait analysis in a motion capture laboratory. Combining the collected kinematic and force-plate data with data taken from sensors onboard the brace, we integrated the brace and leg system into a single inverse dynamics analysis, from which we were able to evaluate the effect of the brace design on the subjects' knee loads and moments. Of the three design goals: a reduction in knee contact forces was demonstrated; increased shock absorption was observed, but not to statistical significance; and naturalmore »gait was largely preserved. Taken in total, the outcome of this study supports additional investigation into the system's clinical effectiveness, and suggests that further refinement of the techniques presented in this paper could open the doors to more effective OA treatment through patient specific braces.« less
  2. Abstract Natural nanomechanisms such as capillaries, neurotransmitters, and ion channels play a vital role in the living systems. But the design principles developed by nature through evolution are not well understood and, hence, not applicable to engineered nanomachines. Thus, the design of nanoscale mechanisms with prescribed functions remains a challenge. Here, we present a systematic approach based on established kinematics techniques to designing, analyzing, and controlling manufacturable nanomachines with prescribed mobility and function built from a finite but extendable number of available “molecular primitives.” Our framework allows the systematic exploration of the design space of irreducibly simple nanomachines, built with prescribed motion specification by combining available nanocomponents into systems having constrained, and consequently controllable motions. We show that the proposed framework has allowed us to discover and verify a molecule in the form of a seven link, seven revolute (7R) closed-loop spatial linkage with mobility (degree-of-freedom (DOF)) of one. Furthermore, our experiments exhibit the type and range of motion predicted by our simulations. Enhancing such a structure into functional nanomechanisms by exploiting and controlling their motions individually or as part of an ensemble could galvanize development of the multitude of engineering, scientific, medical, and consumer applications that can benefit frommore »engineered nanomachines.« less