skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1635315

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In the California Current Ecosystem, krill represent a key link between primary production and higher trophic level species owing to their central position in the food web and tendency to form dense aggregations. However, the strongly advective circulation associated with coastal upwelling may decouple the timing, occurrence, and persistence of krill hotspots from phytoplankton biomass and nutrient sources. Results from a coupled physical‐biological model provide insights into fundamental mechanisms controlling the phenology of krill hotspots in the California Current Ecosystem, and their sensitivity to alongshore changes in coastal upwelling intensity. The simulation indicates that dynamics controlling krill hotspot formation, intensity, and persistence on seasonal and interannual timescales are strongly heterogeneous and related to alongshore variations in upwelling‐favorable winds, primary production, and ocean currents. Furthermore, regions promoting persistent krill hotspot formation coincide with increased observed abundance of top predators, indicating that the model resolves important ecosystem complexity and function. 
    more » « less